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Short Abstract 
Pointing to ubiquitous heritability, sociogenomics enthusiasts argue that social scientists should add genetics to 
their research. Here, I challenge arguments about value of polygenic scores (PGSs) for social science. I explain 
how inevitable environmental confounding for complex social traits undermines the raison d'être of PGSs of 
capturing genetic versus environmental influences. I illuminate the sources of persistent, unavoidable 
environmental confounding in PGSs as well as the unknown biology. I argue that leaving ethical concerns aside, 
the potential scientific rewards of adding PGSs to social science are greatly overstated and the scientific costs 
outweigh these meager benefits for most social science applications.  
 
Long Abstract 
The sociogenomics revolution is upon us, we are told. Whether revolutionary or not, sociogenomics is poised to 
flourish given the ease of incorporating polygenic scores (or PGSs) as ‘genetic propensities’ for complex traits into 
social science research. Pointing to evidence of ubiquitous heritability and the accessibility of genetic data, scholars 
have argued that social scientists not only have an opportunity but a duty to add PGSs to social science research. 
Social science research that ignores genetics is, some proponents argue, at best partial and likely scientifically 
flawed, misleading, and wasteful.  
 
Here, I challenge arguments about the value of genetics for social science and with it the claimed necessity of 
incorporating PGSs into social science models as measures of genetic influences. In so doing, I discuss the 
impracticability of distinguishing genetic influences from environmental influences due to non-causal gene-
environment correlations, especially population stratification, familial confounding, and downward causation. I 
explain how environmental effects masquerade as genetic influences in PGSs, which undermines their raison 
d’être as measures of genetic propensity, especially for complex socially contingent behaviors that are the subject 
of sociogenomics. Additionally, I draw attention to the partial, unknown biology, while highlighting the 
persistence of an implicit, unavoidable reductionist genes versus environments approach. I argue that leaving 
sociopolitical and ethical concerns aside, the potential scientific rewards of adding PGSs to social science are few 
and greatly overstated and the scientific costs, which include obscuring structural disadvantages and cultural 
influences, outweigh these meager benefits for most social science applications.  
 
 
Keywords: Behavior genetics; Environmental confounding; Gene-environment correlation; Genetic 
heterogeneity; GWAS; Human potential; Polygenic scores; Population stratification; Sociogenomics; Statistical 
genetics  
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1. Introduction 
Extraordinary	techno-scientific	advances	over	the	past	two	decades	have	transformed	human	genetics.	Scientists	
are	now	able	to	measure	several	million	genetic	variants	across	the	genome	(i.e.,	genome-wide)	relatively	cheaply	
(<$100)	and	efficiently	with	automated	pipelines.	Consequently,	millions	of	individuals	have	been	genotyped,	which	
is	 the	measurement	of	preselected	variants	 across	 the	genome.	Over	 the	past	decade,	genome-wide	association	
studies	(GWASs),	in	which	a	phenotype	(trait)	is	regressed	on	each	of	the	millions	of	genetic	variants	with	a	few	
controls,	have	become	the	predominant	method	of	 statistically	estimate	genetic	associations	with	genome-wide	
data	and	increasingly	large	datasets.	Thousands	of	GWASs	have	been	performed,	identifying	hundreds	of	thousands	
of	significant	associations	with	a	multitude	of	varied	traits	and	disease	states	(e.g.,	Buniello	et	al.,	2019).		
	
These	molecular	and	computational	innovations	have	launched	the	new	science	of	sociogenomics,	characterized	by	
the	application	of	cutting	edge	statistical	genetic	 tools	and	measures	 to	 social	outcomes.	 In	 recent	years,	 social	
scientists	 have	 teamed	 with	 biostatisticians	 and	 formed	 large	 consortia	 to	 conduct	 GWASs	 on	 complex	 social	
outcomes,	such	as	educational	attainment	(Lee	et	al.,	2018),	same-sex	sexual	behavior	(Ganna	et	al.,	2019),	number	
of	 children	 (Barban	 et	 al.,	 2016),	 and	 income	 (Hill	 et	 al.,	 2019),	 with	 large	 (and	 growing)	 genetic	 datasets.	 In	
sociogenomics,	 as	 elsewhere,	 GWASs	 results	 are	 commonly	 used	 to	 create	 genetic	 summary	 scores,	 known	 as	
polygenic	scores	 (PGSs),	 representing	 the	 (additive)	genetic	propensity	 for	 some	trait	or	behavior	 (e.g.,	years	of	
educational	attainment	completed).	Preconstructed	PGSs	have	been	incorporated	into	widely	used	social	science	
datasets,	such	as	the	Add	Health	Study	and	Health	and	Retirement	Study	(HRS),	to	be	dropped	into	models	‘just	
like	any	other	variable’,	no	genetic	expertise	required	(Braudt,	2018).	Given	the	availability	and	increased	acceptance	
of	genetics	in	social	science,	sociogenomics	is	poised	to	flourish.	
	
This	new	‘golden	age’	of	sociogenomics	filled	the	void	left	by	the	recent	demise	of	the	candidate	gene	x	environment	
era,	which	was,	by	and	large,	a	spectacular	failure	due	to	methodological	limitations	and	an	oversimplified	biology	
(see	Charney,	2021;	Dick	et	al.,	2015).	Suggesting	the	candidate	gene-era	“should	be	a	cautionary	tale,”	psychiatric	
geneticist	Matthew	Keller	asked:	“How	on	Earth	could	we	have	spent	20	years	and	hundreds	of	millions	of	dollars	
studying	pure	noise?”	(quoted	in	Yong	2019,	cited	in	Charney,	2021).	With	adjustments	for	multiple	testing,	attention	
to	 statistical	 power	 and	 large	 samples,	 and	 emphasis	 on	 replication,	 among	 other	 revisions,	 this	 nascent	
sociogenomic	approach	has	addressed	several	methodological	limitations	plaguing	the	candidate	gene	approach.	As	
a	result,	sociogenomic	findings	are	touted	as	methodologically	robust.	Advocates	are	especially	bullish	about	the	
potential	of	PGSs,	which,	they	argue	‘just	work’	(i.e.,	are	statistically	significant	genetic	predictors)	and	have	several	
potential	social	science	applications	that	break	through	the	stale,	outdated	nature	versus	nurture	debate,	on	the	one	
hand,	and	the	neglect	of	genetics	(or	assumption	of	‘genetic	sameness’)	on	the	other	(e.g.,	Belsky	&	Harden,	2019;	
Conley,	2016;	Conley	&	Fletcher,	2017;	Freese,	2018).		
	
Further	still,	many	sociogenomicists	encourage	other	behavioral	scientists	to	incorporate	PGSs	into	their	research	
(e.g.,	Braudt,	2018;	Cesarini	&	Visscher,	2017;	Harden,	2021b;	Mills	&	Tropf,	2020).	Pointing	to	evidence	of	
ubiquitous	heritability,	the	widening	availability	of	genetic	data,	and	the	ease	of	incorporating	PGSs	into	
quantitative	research,	these	scholars	urge	social	scientists	to	incorporate	genetics	or	risk	losing	out	(e.g.,	Conley,	
2016;	Mills	&	Tropf,	2020).	Others	take	an	even	stronger	stance	and	emphasize	not	only	the	potential	but	the	
necessity	of	incorporating	genetics	into	social	science,	arguing	that	social	science	research	that	neglects	genetics	
is,	at	best,	partial	and	potentially	flawed	and	misleading	(e.g.,	Braudt,	2018;	Harden,	2021a;	Hart	et	al.,	2021;	Kweon	
et	al.,	2020).	In	her	recent	book,	The	Genetic	Lottery,	Harden	(2021a)	contends	that	social	science	sans	genetics	
wastes	time,	resources,	attention	and	effort;	supports	misguided	models	of	human	behavior;	and	misinforms	
policies,	causing	still	further	damage.	This	neglect	of	unmeasured	genetic	heterogeneity	makes	social	science	
research	vulnerable	to	sweeping	dismissals	from	other	scientists	(Freese	2008)	or	political	extremists	(Harden,	
2021a).	
	
Yet,	it	remains	the	case	that	only	a	paucity	of	behavioral	science	research	includes	genetics.	This	‘neglect	of	
genetics’	is	due,	some	proponents	have	argued,	not	to	valid	scientific	reasons	but	to	an	ideologically	motivated	
‘tacit	collusion’	to	ignore	genetic	differences	between	people	among	social	scientists	(Freese,	2018;	Harden,	2021a;	
Wright	&	Cullen,	2012).	Harden	(2021b)	argues	that	this	alleged	tacit	collusion	is	not	just	misguided	or	morally	
“wrong	in	the	way	that	jaywalking	is	wrong”	but,	given	the	scientific	warrant	to	include	genetics,	it	is	“wrong	in	
the	way	that	robbing	banks	is	wrong.”	Harden	avers	that	“Failing	to	take	genetics	seriously	is	a	scientific	practice	
that	pervasively	undermines	our	stated	goal	of	understanding	society	so	that	we	can	improve	it”	(p.186).	On	this	
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view,	if	progressive	social	scientists	really	want	to	ameliorate	inequality,	they	need	to	get	with	the	science	and	add	
genetics	to	their	research.	
	
Here,	I	scrutinize	proponents’	arguments	about	the	significant	value	of	PGSs	for	social	science	and	with	it	the	need	
to	 incorporate	 genetics	 into	 social	 science	 models.	 I	 do	 so	 not	 by	 questioning	 the	 ethical	 or	 sociopolitical	
implications	of	this	work,	as	is	common,	but	by	scrutinizing	the	science	of	sociogenomics.	Specifically,	I	focus	on	
the	utility	of	PGSs	for	social	science	and	the	key	premises	underlying	their	use	as	measures	of	‘genetic	propensities’	
for	 behavioral	 differences.	Drawing	on	 contemporary	 statistical	 genetic	 research,	 I	 explain	how	methodological	
limitations	 produce	 environmentally	 confounded	 PGSs.	 I	 emphasize	 that	 environmentally	 confounded	 genetic	
associations	with	complex	social	outcomes	is	not	simply	a	tractable	empirical	problem	to	be	addressed	with	more	
sophisticated	methods.	Rather,	 such	confounding	 is	 inevitable	when	attempting	 to	map	 layered	and	contingent	
social	behaviors,	like	educational	attainment,	to	a	score	representing	a	linear	summation	of	base-pair	differences,	
which	 themselves	 represent	 an	 entirely	 different	 set	 of	 layered	 contingencies.	 I	 explain	 why	 this	 inevitable	
environmental	confounding	of	PGSs	 for	complex	social	 traits	undermines	 their	use	as	 ‘genetic	 influences	on’	or	
‘genetic	 potential	 for’	 social	 traits	 and	 achievements—as	 is	 common.	After	 outlining	 the	 limitations	 of	 current	
sociogenomic	methodologies,	 I	 consider	 the	practical	 implications	by	examining	several	existing	applications	of	
PGSs	to	social	science	and	their	substantive	contributions.		
	
My	explicit	aim	is	to	challenge	the	claim	that	genomics	has	much	to	offer	social	science,	so	much	so	that	social	
science	sans	genetics	is	fatally	flawed,	scientifically	indefensible,	and	possibly	even	morally	suspect.	I	argue	that,	
leaving	sociopolitical	risks	aside,	the	potential	scientific	rewards	are	few	and	greatly	overstated,	and	the	potential	
scientific	costs—obscuring	environmental	influences,	perpetuating	a	flawed	concept	of	genetic	potential	for	social	
behaviors	and	achievements,	and	wasting	resources—outweigh	these	meager	benefits	for	most	applications.	I	am	
not	alone	in	my	concerns,	and	not	all	sociogenomic	practitioners	are	sold	on	the	touted	benefits	of	PGSs;	however,	
cautious	and	skeptical	arguments	are	invariably	drowned	out	by	enthusiastic	hype	and	promissory	notes.	Much	of	
the	excitement	around	sociogenomics	comes	from	the	application	of	these	new	measures	and	techniques	without	
clearly	acknowledging	 limitations	or	accounting	 for	well-known	biases.	Given	 this	 situation,	my	goal	 is	 to	draw	
attention	to	and	explicate	the	limitations	of	sociogenomics	methods,	especially	PGSs,	that	vitiate	their	utility	in	the	
behavioral	sciences.		
	
Before	moving	forward,	a	few	remarks	about	the	larger	backdrop	are	in	order.	Most	historical	and	current	critiques	
of	social	science	genetics	emphasize	sociopolitical	or	ethical	considerations	rather	than	scientific	concerns.	This	
focus	is	due	to	both	socio-historical	reasons	(racist	and	eugenicist	applications	and/or	interpretations	of	this	work	
in	the	past)	and	the	fact	that	the	advanced	biology	and	statistical	genetic	methods	of	sociogenomics	are	well	outside	
the	bailiwick	of	most	social	scientists	(and	thus	lack	of	expertise	and	skills	to	critically	engage	with	this	research).	
Here,	 I	do	not	concentrate	on	sociopolitical	or	ethical	concerns	about	sociogenomics	research,	because	existing	
scholarship	addresses	these	issues,	acknowledging	historical	misuses	with	some	atrocious	results	and	highlighting	
the	potential	misrepresentation	of	sociogenomic	findings	to	support	genetic	determinist	and	inferiorizing	claims	
(e.g.,	 Bliss,	 2018;	 Duster,	 2015;	 Harden,	 2021a;	 Herd	 et	 al.,	 2021;	Martschenko	 et	 al.,	 2019).	While	 I	 share	 these	
concerns,	my	current	focus	is	scrutinizing	sociogenomics	with	the	aim	of	fostering	a	dialogue	that	focuses	squarely	
on	the	science.		
	
This	critical	analysis	proceeds	in	several	parts.	First,	I	provide	a	brief	overview	of	the	genetic	and	statistical	genetic	
fundamentals	 necessary	 to	 understand	 these	 models	 and	 their	 limitations,	 recognizing	 that	 sometimes,	 social	
scientists’	lack	expertise	in	genetics	and	statistical	genetics	methods	is	a	key	barrier	to	engagement.	(Readers	wholly	
unfamiliar	with	genetic	concepts	can	see	 the	primer	 in	Appendix	A,	whereas	 those	 familiar	with	sociogenomics	
concepts	and	methodologies	may	opt	to	jump	to	section	4).	Next,	I	describe	proponents’	key	arguments	for	the	value	
of	adding	genetics	to	social	science.	I	then	discuss	and	critique	the	key	premises	underlying	these	arguments,	with	
a	particular	focus	on	explicating	intractable	environmental	confounding	in	GWASs	associations	and	PGSs.1	I	then	

 
1	Notably,	my	coverage	is	not	exhaustive.	I	highlight	key	issues,	drawing	selectively	on	scholarship	in	these	areas	given	
finite	space.	I	do	not	discuss,	for	example,	the	issue	of	selectivity	(non-generalizability)	of	samples	that	predominant	in	
GWAS	(e.g.,	UK	Biobank	and	23&Me	samples)	(see,	e.g.,	Burt	&	Munafò,	2021;	Fry	et	al.,	2017);	the	lack	of	ancestral	
diversity	in	genomic	data;	or	what	one	reviewer	called	“the	crude	conceptualisation	of	psycho-social	traits	implicit	in	
GWAS/PGSs	and	of	the	measures	used.”		
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explain	how	these	challenges	undermine	the	utility	of	PGSs	as	measures	of	genetic	influences	or	potential.	I	conclude	
by	offering	several	suggestions	for	the	field.		
	
2.	A	Primer	on	Genomics	
At	present	preconstructed	polygenic	scores	are	available	in	several	accessible	social	science	data	sets	available	to	be	
dropped	 into	models	 just	 like	 any	 other	 variable	 (Braudt,	 2018;	Mills	 &	 Tropf,	 2020).	 Properly	 interpreting	 the	
meaning	and	challenges	of	PGSs,	however,	requires	some	knowledge	of	what	PGSs	capture,	what	they	don’t,	and	
what	these	models	assume.		
	
2.1	Basic	Genetic	Concepts	in	Sociogenomics	

**Table	1	(Acronyms	&	Definitions)	here**	
	
2.2	Genetic	Variants,	Function,	and	Prevalence	
Given	 that	 sociogenomics	 focuses	 on	 genetic	 variation	 among	people,	 understanding	 the	 type,	 prevalence,	 and	
distribution	of	 human	 variation	 is	 necessary	 to	understand	what	 is	 and	 is	 not	 being	 captured	 in	 these	 studies.	
Genetic	 variants	 can	 be	 classified	 into	 three	 types:	 (1)	 single	 nucleotide	 variants	 (SNVs),	which	 are	 single	 base	
changes	(G→A);	(2)	indels,	which	are	insertions	of	base	pairs	or	deletions	up	to	50bp	and	often	involve	tandem	
repeating	units	(e.g.,	GATA	repeated	2-8	times);	and,	(3)	structural	variants	(SVs),	which	are	DNA	rearrangements	
(deletions,	duplications,	or	inversions)	ranging	from	50bp	to	more	than	a	million	base	pairs	(1Mbp).	As	discussed	
below,	 GWASs	 and	 PGSs	 analyze	 a	 subset	 of	 ‘common’	 single	 nucleotide	 variants,	 known	 as	 single	 nucleotide	
polymorphisms	(SNPs),	where	common	usually	means	present	in	at	least	1%	of	the	population	(see	Appendix	A	for	
more	detail).	
	
Human	 genetic	 variation	 is	 extensive—all	 genetic	 variants	 compatible	 with	 life	 are	 likely	 represented	 in	 some	
individual	living	today	(McClellan	&	King,	2010).	Comparing	the	genomes	of	any	two	humans	around	the	world,	we	
would	typically	find	between	3	to	4.5	million	genetic	differences	between	them	or	approximately	1	variant	every	800	
bases2.	Most	of	these	genetic	variants	are	SNPs	and	are	non-functional.	That	is,	they	have	no	effects	on	biological	
functioning	or	differences	between	people.	Obviously,	only	functional	variants	contribute	to	differences	between	
people.	While	some	genetic	variation	is	debilitating,	most	genetic	variation	in	a	given	genome	is	benign,	ancient,	
and	common.	
	
In	contrast,	functional	variants	are	those	that	either	alter	gene	product	(the	protein	produced)	or	gene	dosage	
(e.g.,	the	amount	of	protein	produced).	As	an	example	of	the	former,	the	SLC24A5	gene	encodes	a	protein	involved	
in	epidermal	melanogenesis	and	skin	pigmentation	through	its	intracellular	potassium-dependent	exchanger	
activity	(Ginger	et	al.,	2008).	Several	thousand	years	ago,	a	G→A	mutation	in	SLC24A5	occurred	among	people	
migrating	from	African	to	Europe.	This	variant,	which	changes	the	encoded	amino	acid	from	alanine	to	threonine,	
disrupts	melanogenesis	and	thereby	results	in	lighter	skin	tone	(Lamason	et	al.,	2005).	Other	variants	can	affect	
function	not	by	changing	the	protein	produced	but,	for	example,	by	affecting	the	binding	sites	for	various	RNAs	in	
a	manner	that	reduces	or	increases	transcription	and	thereby	contributes	to	trait	differences	by	altering	gene	
dosage	(the	production	of	too	much	or	too	little	of	the	functional	protein).		
	
All	three	variant	types	can	be	functional	and	contribute	to	differences	between	people.	Although	rare	compared	to	
SNVs	and	indels,	evidence	suggests	that	structural	variants	have	a	disproportionate	role	in	shaping	human	
differences	compared	to	other	variants	(Chiang	et	al.,	2017;	Collins	et	al.,	2020;	Takumi	&	Tamada,	2018).	
Structural	variants	can	involve	multiple	copies	of	genes	or	the	deletion	of	a	gene	and	thus	influence	gene	dosage	
(the	production	of	too	much	or	too	little	of	the	functional	protein).	Sudmant	et	al.	(2015)	estimated	that	structural	
variants	were	50	times	more	likely	than	SNVs	to	affect	gene	expression	and	three	times	more	likely	to	be	
associated	with	a	trait	difference	than	a	SNV.		
	
Despite	being	the	extreme	minority	among	the	variants	we	carry,	we	all	have	thousands	of	functional	variants	in	
our	genomes.	A	recent	deep	sequencing	study	of	diverse	ancestries	identified	approximately	11,700	functional	
variants	per	individual	genome	(Taliun	et	al.,	2021).	Another	study	of	roughly	half	a	million	people	in	the	U.K.,	
Backman	et	al.	(2021)	observed	an	average	of	~	600	variants,	including	50	putative	loss-of-function	(pLOFs)	

 
2	Or	4-5	nucleotide	differences	every	1000	bp	accounting	for	structural	variants.	
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variants,	per	gene.	Backman	et	al.	(2021)	estimated	that	on	average	each	of	us	carries	214	putative	loss-of-function	
variants	as	‘defective’	gene	copies.	Although	this	variation	is	non-trivial,	recall	that	we	receive	two	copies	of	our	
genes	(excepting	the	male-specific	genes	on	the	Y	chromosome).	In	addition,	a	host	of	cellular	mechanisms,	
including	those	shaping	gene	expression,	compensate	for	many	of	these	loss-of-function	variants	and	facilitate	
robustness	to	functional	mutations	by,	for	example,	up-regulating	transcription	(thereby	producing	more	mRNA	
transcripts)	and	slowing	the	rate	of	mRNA	decay	(thereby	increasing	the	ability	of	the	cell	to	make	more	
polypeptides	from	the	same	mRNA	transcript)	(see	Strachan	&	Reed	2018).		
	
In	addition	to	the	several	million	genetic	variants	passed	down	by	each	of	our	parents,	we	inherit	roughly	30	to	80	
new	mutations	that	arise	during	meiosis.	The	human	population	explosion	over	the	past	several	hundred	years	has	
produced	an	abundance	of	new	mutations	as	rare	variants.	Rare	variants	are	disproportionately	deleterious.	Fu	et	
al.	(2013)	estimated	that	~86%	of	all	deleterious	SNVs	are	rare	and	recent.	Many	of	these	variants	are	found	in	only	
a	 handful	 of	 related	 people	 and	 are	 not	 represented	 in	 population	 samples.	 As	 discussed	 later,	 despite	 their	
prevalence	and	disease-relevance,	rare	variants	pose	a	challenge	for	GWASs.	
	
2.3	A	Brief	Note	on	Ancestry	&	Continental	Populations	
Most	sociogenomic	studies	at	least	briefly	discuss	ancestry	and	issues	related	thereto.	A	basic	understanding	of	what	
this	refers	to	is	helpful	(for	a	social	science	discussion,	see	Herd	et	al.,	2021).	Modern	humans	are,	of	course,	a	single	
species,	which	emerged	some	550-750	 thousand	years	ago	 (Fu	et	al.	 2016).	Although	 terminology	varies,	 several	
population	 genetic	 studies	 classify	 humans	 roughly	 into	 five	 continental	 populations:	 African	 (AFR),	 European	
(EUR),	East	Asian	(EAS),	South	Asian	(SAS),	and	American	(AMR),	differentiated	by	their	continental	migration	out	
of	 Africa	 within	 the	 last	 100k	 years	 (Genomes	 Project	 Consortium,	 2015).	 Importantly,	 these	 populations	 are	
abstractions	 from	 an	 underlying	 continuum	of	 genetic	 relatedness	 and	 should	 not	 be	 thought	 of	 as	 genetically	
distinct	subpopulations	(Coop	&	Przeworski,	2022;	Feldman	et	al.,	2003).	
		
The	vast	majority	of	variants	in	an	individual’s	genome	are	shared	by	all	continental	populations	(Genomes	Project	
Consortium,	2015).	Only	a	small	proportion	of	the	variants	in	an	individual	genome	are	restricted	to	one	continental	
population,	and	these	tend	to	be	recent	mutations	that	are	also	rare	in	the	populations	in	which	they	are	found.	
However,	allele	frequencies	for	common	variants	do	differ	across	groups	due	to	population	patterns	of	migration	
and	mating,	shaped	by	physical	boundaries	and	sociocultural	influences.	Furthermore,	allele	frequencies	vary	in	a	
more	fine-grained	manner	across	subgroups	of	populations,	especially	for	rare	variants	(Mathieson	&	Mcvean,	2012).	
As	 discussed	 later,	 this	 variation	 in	 mostly	 random	 allele	 frequencies	 across	 difference	 groups	 poses	 a	 major	
challenge	 for	GWAS	by	 inducing	or	 inflating	genetic	associations	 through	confounding	between	genotypes	and	
outcomes	(e.g.,	Berg	et	al.,	2019;	Morris	et	al.,	2020a).	
	
	
3.	Statistical	Genetic	Methods	of	Sociogenomics	
	
3.1	What	Genetic	Differences	are	Measured?	
The	complexity	of	GWASs/PGSs	and	the	way	that	they	are	discussed	can	produce	confusion	over	what	is	measured	
in	these	studies.	Readers	can	be	excused	from	thinking	that	these	studies	measure	genes	and/or	causal	variants	that	
shape	differences	through	some	known	biological	pathway.	The	abstract	of	a	recent	study,	for	example,	referenced	
“mothers	with	more	 education-related	 genes”	 (Armstrong-Carter	 et	 al.	 2020).	Genes	 are	not	measured	 in	 these	
studies.	Rather,	these	studies	measure	and	analyze	a	select	subset	of	one	form	of	variation	in	the	genome:	single	
nucleotide	polymorphisms	(SNPs)	that	have	two	alleles	(e.g.,	A	or	C)	(see	Appendix	A	for	a	detailed	discussion).3	In	
this	section,	I	describe	with	as	much	simplicity	as	possible	what	is	measured	in	GWASs/PGSs	and	why.	Although	
intricate,	understanding	what	GWASs/PGSs	do	measure	 (SNPs)	 and	 that	 they	do	not	measure	 (genes	or	 causal	
variants)	is	necessary	to	understand	the	inherent	limitations	with	this	approach.	
	
The	GWAS	methodology	 is	 rooted	 in	the	blocklike	structure	of	our	genome.	Although	technical	detail	 is	out	of	
scope,	we	inherit	whole	chromosomes	from	each	parent,	but	these	chromosomes	are	composed	of	unique	blends	of	

 
3	A	relatively	small	number	of	GWASs	(but	none	in	sociogenomics)	have	analyzed	common	copy	number	variants	
(CNVs)	(see,	e.g.,	Bochukova	et	al.	2010;	Willer	et	al.	2009).		
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blocks	of	our	parents’	maternal	and	paternal	chromosomes	created	during	the	process	of	‘crossing	over’	(or	genetic	
recombination).	Each	chromosome	we	inherit	is	a	unique	blend	of	our	parents’	matching	chromosomes,	created	
when	segments	are	exchanged	in	meiosis	(an	average	of	1.5	blocks	of	exchange	per	chromosome).	Helpfully,	crossing	
over	does	not	occur	 randomly	across	 the	genome	but	 tends	 to	occur	 in	 1-2kb	regions,	known	as	 recombination	
hotspots,	which	occur	every	50-100kb	across	the	genome	(Myers	et	al.,	2005).	Consequently,	blocks	of	chromosomal	
segments	are	passed	down	across	many	generations	unbroken	by	recombination,	and,	by	dint	of	being	passed	down	
unbroken,	contain	correlated	SNPs	(i.e.,	SNPs	that	are	not	inherited	independently).	These	chromosomal	segments	
that	 exist	 between	 recombination	hotspots	 are	 known	as	haplotype	blocks.	 The	 association	between	SNPs	on	 a	
haplotype	is	known	as	linkage	disequilibrium	(LD)	and	exists	as	a	matter	of	degree	(as	a	correlation).	
	
This	haplotype	structure	of	our	genome	means	that	there	 is	much	less	variability	between	genomes	than	would	
occur	from	the	random	assortment	of	SNPs.	For	example,	the	average	haplotype	block	contains	~50	SNPs,	which	
would,	 in	 theory,	 allow	 250	 different	 combinations.	 Typically,	 however,	 most	 haplotype	 (>90%)	 blocks	 will	 be	
characterized	 by	 six	 or	 fewer	 combinations	 of	 alleles	 (The	 International	 HapMap	 Consortium,	 2005).	 The	
combination	of	alleles	on	a	haplotype	block	is	known	as	haplotype	and	represent	ancestral	segments	defined	by	
common,	 ancient	 SNPs.	 Rarer	 variation	 exists	 as	 heterogeneity	 around	 the	 common,	 ancient	 SNPs	 that	 define	
haplotype	blocks	(Strachan	&	Read,	2018).	
	
This	haplotype	structure	of	our	genomes	undergirds	the	GWAS	methodology.	Measuring	and	testing	each	of	our	
3bn	base	pairs	is	impracticable.	Instead,	GWASs	analyze	a	smaller	number	of	SNPs	from	across	the	genome	to	tag	
regions	of	common	variation	(i.e.,	haplotypes).	Contemporary	GWASs	scan	the	genome	for	associations	between	
several	million	of	 these	preselected	SNPs,	known	as	 ‘tag	SNPs’	and	a	trait.	Significant	SNPs	associations	mark	a	
genomic	region	(‘genomic	risk	locus’	or	quantitative	trait	locus,	QTL)	in	which	an	unknown	causal	variant(s)	driving	
the	association	is	presumed	to	lie.	Tag	SNPs	are	thus	usually	non-functional,	common	variants	used	as	proxies	for	
some	 unknown	 causal	 variant(s)	 in	 proximity	 (with	 which	 they	 are	 in	 LD).	 Proximity	 is	 relative	 and	 varying.	
Genomic	risk	loci	can	range	in	size	from	several	hundred	thousand	to	more	than	1Mbp.	
	
Crucially,	rare	and	more	likely	deleterious	variants	are	not	well	tagged	by	SNPs,	given	that	SNPs	tag	haplotypes	
defined	by	shared	common	variants,	and	most	haplotypes	will	not	contain	the	rare	variants	(or	they	wouldn’t	be	
rare)4	(Backman	et	al.,	2021;	McClellan	&	King,	2010;	Tam	et	al.,	2019).	Additionally,	other	variant	forms—indels,	
CNVs,	 and	 structural	 variants—are	 not	measured	 in	GWASs,	 and	many	 are	 not	well-tagged	 by	 common	 SNPs	
(Backman	et	al.,	2021;	Tam	et	al.,	2019).	
	
Additionally,	because	different	ancestral	groups	can	have	different	allele	frequencies,	different	patterns	of	LD,	and	
somewhat	different	haplotypes,	tag	SNPs	often	do	not	work	in	the	same	way	across	populations,	even	when	the	
causal	variant	is	the	same	(Martin	et	al.,	2017;	Peterson	et	al.,	2019).	This	ancestral	variation	in	LD	and	haplotypes	
is	one	biological	reason	why	GWAS	findings	do	not	‘port	well’	or	generalize	across	ancestral	groups	(e.g.,	
Mostafavi	et	al.,	2020).		
	
The	haplotype	structure	of	our	genome	also	enables	GWAS	by	facilitating	imputation.	GWASs	rely	on	large	
samples;	however,	studies	vary	in	the	genotyping	platforms	they	use,	which	measure	somewhat	different	SNPs,	
and	contain	missing	data.	Knowledge	of	haplotypes	allows	the	probabilistic	imputation	of	missing	or	untyped	
genotypes	at	adjacent	SNPs	using	more	densely	genotyped	samples	or	whole	genome	reference	panels.5	Most	
genotype	arrays	now	measure	between	500,000	to	2	million	SNPs,	and	most	contemporary	GWASs	now	include	
~10	million	SNPs,	most	imputed	(Tam	et	al.,	2019).		
	

 
4	For	example,	in	their	recent	UK	Biobank	study	using	whole-exome	sequencing,	Backman	et	al.	(2021)	noted:	“Rare	
variant	associations	were	enriched	in	loci	from	genome-wide	association	studies	(GWAS),	but	most	(91%)	were	
independent	of	common	variant	signals.”	
 
5	Commonly	used	reference	panels	include	the	1KG,	HapMap	Phase	2,	and,	more	recently,	the	ancestrally	diverse	Trans-
Omics	for	Precision	Medicine	(TOP	Med)	sample	(Taliun	et	al.,	2021).	For	better	or	worse,	the	reference	panels	differ	
across	samples	used	in	meta-analyses.	One	might	think	it	wise	to	control	for	the	reference	population	used	for	
imputation	in	a	meta-analysis;	however,	I	have	not	seen	this	done	in	practice.	
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The	original	aim	of	GWASs	was	to	understand	the	underlying	molecular	basis	of	trait	variation	by	tracing	causal	
pathways	from	genetic	variants	to	outcomes.	The	idea	was	that	tag	SNPs	could	be	used	to	mark	risk	loci	that	could	
be	followed	up	with	fine-mapping	and	functional	annotation	to	identify	causal	variants	in	genes	with	well-defined	
functions.	Although	GWASs	have,	in	some	cases,	facilitated	the	identification	of	causal	variants	involved	in	disease	
pathogenesis,	for	reasons	that	are	out	of	scope,	biological	interpretation	is	exceedingly	difficult,	in	general,	and	even	
more	so	for	complex	social	traits	with	increasingly	numerous	(>1000)	GWAS	hits	and	miniscule	effect	sizes	(see	e.g.,	
Backman	et	al.,	2021;	Crouch	&	Bodmer,	2020;	Edwards	et	al.,	2013).	Hence,	sociogenomicists	primarily	use	GWAS	
results	for	polygenic	prediction,	explicitly	deemphasizing	inquiry	into	causal	variant(s)	or	biological	pathways	(but	
not	always,	see	e.g.,	Ganna	et	al.	2019).	In	what	follows,	I	briefly	describe	the	nuts	and	bolts	of	GWAS,	this	is	followed	
by	a	discussion	of	PGS	generation.	
	
3.2	GWAS	Methodology	
	
GWASs	are	a	theory-free	analytic	approach	to	scan	the	genome	for	trait-associated	tag	SNPs.	This	involves	testing,	
for	 each	 SNP	 one	 at	 a	 time,	whether	 an	 allele	 (SNP	 variant)	 is	more	 common	 in	 cases	 versus	 controls	 (or	 for	
continuous	traits,	across	different	levels).	GWASs	thus	test	for	independence	between	genotype	and	outcome	for	
each	SNP,	with	a	few	controls	(not	including	other	SNPs).	The	2018	educational	attainment	GWASs,	for	example,	
assessed	whether	allele	 frequencies—for	roughly	 10	million	SNPs—differed	(across	groups	stratified	by)	years	of	
education	(Lee	et	al.,	2018).	Typically,	the	type	of	effect	of	interest	in	GWASs	are	variant	substitution	effects,	which	
can	be	understood	as	 the	counterfactual	 change	 in	an	 individual	outcome	 that	would	occur	 from	changing	 the	
individual’s	genotype	 for	a	particular	SNP	at	 conception	 (holding	all	 else	constant)	 (Freese,	 2008;	Morris	 et	 al.,	
2020a).	This	counterfactual	model	assumes	 that	genetic	associations	 indicate	a	causal	path	 from	an	 individual’s	
genotype	(or	allele	dosage)	to	complex	social	traits,	reflecting	a	variant	substitution	effect	(Lawson	et	al.,	2020).	
	
The	basic	form	of	GWASs	is	straightforward.	Here	I	focus	on	these	basics,	including	the	familiar	linear	equation	
form	that	underlies	the	model.	This	model	has	been	elaborated	in	recent	years,	but	the	underlying	logic	remains	the	
same.	Using	biallelic	SNPs	and	assuming	additive	SNP	effects,	genotypes	for	a	particular	SNP	(e.g.,	AA,	AC,	CC)	are	
translated	to	numeric	allele	dosage	effects	by	counting	the	number	of	minor	(or	effect)	alleles	(0,	1,	or	2)	for	each	
individual.	Allele	dosages	for	each	SNP	are	the	focal	independent	variable	in	each	of	these	millions	of	regressions	
(again,	one	for	each	SNP	examined	separately),	which	take	the	following	general	form:	
	

𝑌	 =	𝛽" + 𝛽# ∗ 𝑆𝑁𝑃 +	𝛽$	 ∗ 𝑆𝑒𝑥 +	𝛽%	 ∗ 𝐴𝑔𝑒 + 𝛽&	 ∗ 𝑃𝐶1…	𝛽#&	 ∗ 𝑃𝐶10 + 	𝑒	
	
Where	 Y	 is	 a	 continuous	 variable	 (e.g.,	 years	 of	 education),	 and	 SNP	 represents	 the	 allele	 dosage	 measure,	
controlling	 for	 age,	 sex,	 and	 usually	 10-20	 genetic	 ancestry	 principal	 components	 (PCs,	 discussed	 shortly).	 The	
outcome	of	 interest	 in	this	model	 is	𝛽1—the	effect	size	for	each	SNP—which	can	be	interpreted	as	the	marginal	
effect	 of	 having	 one	more	minor	 allele	 (a	 unit	 increase	 in	 allele	 dosage)	 and	 its	 associated	 p-value.	 For	 binary	
outcomes,	this	would	just	approximate	the	form	of	a	familiar	logistic	regression	model.	These	results	for	the	millions	
of	separate	regressions	are	automatically	compiled	into	results	by	modern	computational	programming	software,	
such	as	PLINK	(Purcell	et	al.,	2007)	and	METAL	(Willer	et	al.,	2010).	Focal	GWAS	results,	as	the	SNP	effect	size	
estimates	and	p-values,	are	known	as	summary	statistics,	which	provide	the	input	for	further	analyses.	Summary	
statistics	are	often	considered	the	‘data’	in	GWAS	even	as	these	are	more	accurately	referred	to	as	the	results	(of	the	
first	step	of	the	analysis)	(Burt	&	Munafò,	2021).		
	
Following	 the	 estimation	 of	 the	GWAS	 from	 the	 primary	 study	 sample	 or	 the	 ‘discovery’	 sample,	 a	 number	 of	
diagnostic	tests	(e.g.,	Manhattan	and	QQ-plots,	which	display	p-values	on	a	-log10	scale)	are	performed	(see	Choi	et	
al.,	2020;	Schaid	et	al.,	2018).	Due	to	LD	(non-independence	among	SNPs	sharing	a	haplotype)	and	the	examination	
of	each	SNP	separately,	there	will	invariably	be	multiple	(even	dozens	of)	SNPs	marking	a	risk	locus.	Thus,	follow-
up	analyses	(e.g.,	clumping	and	thresholding)	are	conducted	to	define	clusters	of	SNPs	in	high	LD	(often	high	LD	is	
defined	as	r2>.16)	and	to	identify	a	single	‘lead	SNP’,	usually	the	SNP	with	the	lowest	p-value,	to	represent	this	clump	
and	 mark	 a	 risk	 locus.	 In	 this	 way,	 risk	 loci	 (or	 QTLs)	 are	 defined	 as	 trait-associated	 regions	 marked	 by	
approximately	independent	(“lead”)	SNPs.		

 
6	As	we	have	noted	elsewhere	(Burt	&	Munafò	2020),	these	various	thresholds	are	somewhat	arbitrary	and	vary	across	
studies,	increasing,	as	others	have	also	noted,	researcher	degrees	of	freedom	(Charney	2021).	
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As	noted,	risk	loci	range	in	size	from	~50kbp	to	over	1Mbp	(e.g.,	Lee	et	al.	2018).	Thus,	a	GWAS	that	reports	1237	lead	
SNPs	can	thus	be	understood	as	identifying	1237	approximately	independent	risk	loci	defined	by	a	lead	SNP	and	in	
which	the	causal	variant(s)	responsible	for	the	association	is	presumed	to	lie.	Such	risk	loci,	which	often	stretch	
across	multiple	haplotypes,	usually	contain	thousands	of	SNVs	along	with	structural	variants	and	indels,	and	often	
multiple	genes	(hence	the	difficulty	of	biological	interpretation).	
	
Importantly,	 lead	SNPs	 for	complex	social	 traits	are	 invariably	very	weakly	associated	with	an	outcome,	usually	
accounting	for	less	than	.01%	of	the	variation.	In	their	educational	attainment	study,	for	example,	Lee	et	al.	(2018)	
reported	that	“the	median	effect	size	of	the	lead	SNPs	corresponds	to	1.7	weeks	of	schooling	per	allele.”	Similarly,	
among	the	five	lead	SNPs	identified	in	their	study	of	‘non-heterosexuality’	in	the	UK	Biobank,	Ganna	et	al.	(2019)	
observed	‘very	small	effects’;	“males	with	a	GT	genotype	at	the	rs34730029	locus	had	0.4%	higher	prevalence	of	same-
sex	sexual	behavior	than	those	with	a	TT	genotype	(4.0	versus	3.6%)”	(p.3).	Given	the	impracticability	of	biological	
interpretation	and	the	weak	prediction	from	any	single	variant	or	QTL,	researchers	have	shifted	to	creating	genetic	
summary	scores	that	aggregate	SNPs	weighted	by	their	effect	sizes,	discussed	next.	
	
3.3	Polygenic	Score	(PGS)	Construction	
Calculating	PGSs	(also	called	polygenic	risk	scores	(PRS)	or	genetic	risk	scores	(GRS),	usually	when	referring	to	
adverse	biomedical	outcomes)	is	now	a	common	application	of	GWASs	to	predict	complex	traits	(or	disease	risk)	
from	weight	and	height	to	depression	and	educational	attainment	(Evans	et	al.,	2009;	Wray	et	al.,	2007).	PGSs	
operate	under	a	massively	polygenic,	additive	model	(Boyle	et	al.,	2017).	Under	this	model,	summing	the	GWAS-
weighted	risk	(or	effect)	allele	dosages	(0,	1	or	2)	usually	with	several	sophisticated	statistical	adjustments	can	
provide	an	index	of	a	continuous	underlying	(additive)	genetic	liability	for	a	trait.7	The	human	equivalent	of	the	
‘breeding	value’	in	selective	plant	and	animal	breeding	in	human	populations	(Meuwissen	et	al.,	2001),	PGSs	have	
been	described	as	“summariz[ing]	the	cumulative	effects	of	many	variants	across	the	genome	and	aim[ing]	to	
index	an	individual’s	genetic	liability	for	a	given	trait”	(Domingue	et	al.	2020,	p.	465)	or	a	“single	quantitative	
measure	of	genetic	predisposition”(Mills	et	al.,	2018).	The	educational	attainment	PGS	has	been	characterized	as	
measuring	“an	individual’s	genetic	predisposition	for	completing	[more	years	of]	formal	schooling”	(Bolyard	&	
Savelyev,	2020)	and	a	“DNA-based	indicator[]	of	propensity	to	succeed	in	education”	(Harden	et	al.,	2020).	
	
The	specific	details	on	PGS	construction	can,	and	have,	filled	articles	(see	Choi	et	al.	2020	for	more	detail),	but	the	
basic	process	is	as	follows:	run	GWAS	in	discovery	sample	→	replicate	results	in	an	independent	sample	→	adjust	
for	LD	using	a	reference	panel	→	select	SNPs	→	adjust	for	LD	and	winner’s	curse→	construct	PGS	→	test	PGS	
prediction	in	a	target	sample	→	assess	PGS	with	incremental	R2.	There	are	several	researcher	decisions	involved	in	
PGS	construction	worth	noting.	In	the	‘select	SNPs’	phase	of	PGS	construction,	researchers	decide	which	SNPs	to	
include	in	the	PGS	(via	p-value	thresholds)	based	on	the	success	of	prediction.	Specifically,	researchers	evaluate	
several	PGSs	created	at	a	variety	of	p-value	thresholds	and	select	the	best	PGS	predictor	(measured	by	R2),	which	is	
usually	the	PGSs	created	from	a	p<1	threshold	(i.e.,	no	p-value	threshold)	(e.g.,	Belsky	et	al.,	2018;	Ganna	et	al.,	
2019;	Lee	et	al.,	2018).8		
	
Thus,	in	what	may	come	as	a	surprise	to	some,	most	PGSs	are	constructed	from	all	available	SNPs	regardless	of	
their	statistical	significance	in	the	GWAS.	Available	evidence	suggests	that	these	‘all	SNPs’	PGSs	are	more	
environmentally	confounded	than	those	that	use	(more	stringent)	p-value	thresholds,	such	that	while	these	may	
explain	more	variance,	they	do	so	because	they	capture	environmental	influences	as	well	as	genetic	ones	(Berg	et	
al.,	2019;	Mostafavi	et	al.,	2020).	

 
7	As	with	the	use	of	SNP	associations	for	GWAS	follow-up,	when	constructing	PGSs,	LD	between	SNPs	needs	to	be	
accounted	for	to	avoid	aggregating	SNPs	that	tag	the	same	region	of	variation	(i.e.,	multiple	counting).	That	said,	not	all	
studies	correct	for	LD	when	creating	PGSs	(see,	e.g.,	Wertz	et	al.	2018,	2019).	The	consequence	is	an	inflated	PGS	due	to	
counting	multiple	SNPs	that	tag	the	same	effect.	
	
8	Some	more	sophisticated	models,	like	LDPred,	do	not	use	p-value	thresholds	but	instead	involve	the	selection	of	
various	priors	(assumptions)	about	the	number	of	causal	SNPs.	In	practice,	the	prior	is	that	‘all	SNPs	are	causal’,	which	is	
curiously	not	defended	anywhere	to	our	knowledge.	Moreover,	the	idea	that	all	SNPs	have	causal	effects	is	not	
consistent	with	available	empirical	evidence.		
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4.	The	Utility	of	PGSs	for	Social	Science:	Proponents’	Arguments	

Touted	as	a	powerful	new	‘tool’	for	social	scientists	to	incorporate	genetics	into	their	research,	PGSs	are	said	to	
offer	exciting	new	opportunities	for	social	science	research	(Braudt,	2018;	Freese,	2018;	Harden	&	Koellinger,	2020;	
Mills	&	Tropf,	2020).	Below	I	describe	proponents’	chief	arguments	about	the	utility	of	PGSs	for	social	science,	but	
first	a	note	on	PGSs	lack	of	efficacy	in	individual	prediction.	
	
With	few	exceptions	(e.g.,	Plomin,	2019;	Plomin	&	Von	Stumm,	2018),	scholars	agree	that	PGSs	do	not	predict	
complex	social	outcomes	with	any	degree	of	efficacy	or	accuracy	and,	therefore,	should	not	be	used	for	individual	
prediction	(see,	e.g.,	Harden	&	Koellinger,	2020;	Morris	et	al.,	2020b).	Although	not	appropriate	for	predicting	
individual	outcomes,	proponents	emphasize	myriad	benefits	to	incorporating	PGSs	to	social	science.		
	
4.1	“Getting	Genetics	out	of	the	Way”	
Perhaps	 the	 most	 hyped	 value	 of	 PGSs	 in	 social	 science	 is	 to	 control	 for	 genetic	 heterogeneity	 in	 studies	 of	
environmental	effects.	According	to	Harden	(2021a),	many	sociogenomicists	are	most	excited	about	the	potential	of	
PGSs	as	a	tool	“to	make	genetics	recede	into	the	background,	to	get	it	out	of	the	way”	so	that	we	can	more	clearly	
see	 the	 effects	 of	 environments	 (see	 also	 Conley,	 2016).	 Given	 ubiquitous	 heritability,	 proponents	 argue	 that	
uncontrolled	genetic	heterogeneity	poses	a	serious	threat	to	inferences	about	the	effects	of	specific	environments,	
as	 these	 ostensibly	 environmental	 causes	may	 be	 biased	 or	 spurious	 (as	 actually	 driven	 by	 genetic	 differences)	
(Harden	&	Koellinger,	2020;	Hart	et	al.,	2021).	For	example,	rather	than	health	or	 longevity	being	 influenced	by	
higher	 educational	 attainment,	 scholars	 have	 suggested,	 these	 relationships	 may	 be	 spurious	 with	 genetic	
endowment	 being	 the	 causal	 force.	 Similarly,	 sociogenomicists	 have	 asked,	 whether	 parental	 environments,	
including	 early	 childcare,	 causally	 influence	 educational	 attainment	 or	whether	 these	 are	 spuriously	 associated	
because	of	shared	genetic	endowments.		
	
Proponents	also	argue	that	 incorporating	PGSs	as	control	variables	 into	social	science	research	can	enhance	the	
precision	of	environmental	estimates	(Cesarini	&	Visscher,	2017;	Harden,	2021a,	2021b;	Kweon	et	al.,	2020).	This	
enhanced	precision	may	increase	the	power	associated	with	randomized	controlled	trials,	potentially	shrinking	their	
cost	(Lee	et	al.,	2018;	Rietveld	et	al.,	2013).	Controlling	for	genetic	heterogeneity	with	PGSs,	proponents	argue,	may	
also	reveal	previously	obscured	environmental	effects.	For	example,	some	environmental	influences	on	educational	
attainment	may	only	be	apparent	among	those	at	‘high	genetic	risk’	(Herd	et	al.,	2021).	For	these	reasons,	proponents	
suggest,	PGSs	are	valuable	as	a	control	for	differential	genetic	propensity	to	illuminate	more	clearly	and	precisely	
the	effects	of	environmental	influences	(Harden	&	Koellinger,	2020;	Trejo	&	Domingue,	2019).		
	
4.2	A	Powerful,	Flexible	Analytic	Tool	for	Causal	Inference	
Proponents	also	emphasize	the	value	of	PGSs	as	a	powerful	tool	for	causal	inference	(Belsky	&	Israel,	2014).	This	
strength	of	PGSs,	proponents	argue,	draws	on	several	unique	advantages	of	genetic	data	(Conley,	2016;	Harden,	
2021a).	First,	evidence	(from	twin	studies	of	heritability)	suggests	that	genetic	differences	matter.	Second,	“the	
genetic	sequence	of	each	person	is	fixed	at	conception	and	does	not	change	throughout	one’s	lifetime”(Kweon	et	
al.,	2020),	which	means	that	genotype	need	only	be	measured	once.	Further,	once	measured,	PGSs	can	be	
calculated	for	any	outcome,	which	need	not	be	measured	in	the	study,	and	as	PGSs	are	updated	with	larger	and	
more	diverse	samples,	these	individual	scores	can	be	created	and	updated	(Belsky	et	al.,	2018;	Harden,	2021a,	
2021b).		
	
Proponents	emphasize	that	this	fixity	of	our	DNA	sequence	means	that	reverse	causality	from	behavior	or	
environmental	exposures	to	the	genome	can	be	ruled	out.	Given	this,	genetic	data	can	serve	as	exogenous	
measures	of	individual	characteristics,	which	do	not	change	over	the	life	course,	“facilitating	the	tracing	of	
developmental	paths”	or	as	a	“fixed	point	from	which	to	observe	child	development”	(Belsky	&	Israel,	2014;	Harden	
et	al.,	2020).	Scholars	have	argued	that	PGSs	can	be	used	as	a	‘molecular	tracer’:	“Just	as	a	radiologist	might	
administer	a	radioactive	tracer	to	track	the	flow	of	blood	within	the	body,	researchers	can	use	genetics	as	a	
molecular	tracer	to	get	a	clearer	image	of	how	students	progress	through	the	twists	and	turns	of	the	educational	
system”(Harden	et	al.,	2020).		
	
4.3 Gene-Environment	Interplay	
PGSs	are	also	advertised	as	a	more	direct	and	powerful	tool	to	explore	how	gene-environment	interplay	influences	
social	outcomes.	Broadly,	gene-environment	interplay	with	PGSs	can	be	demarcated	into	three	broad	types:	(1)	
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PGS-environment	interactions	(e.g.,	does	gender	suppress	‘genetic	potential’	for	educational	attainment;	Herd	et	
al.,	2018),	(2)	PGS-environment	combinatory	effects	(e.g.,	how	do	‘nature’	and	‘nurture’	combine	to	shape	
children’s	resemblance	to	their	parents	in	human	capital	accumulations	over	time;	Harden	&	Koellinger,	2020),	
and	(3)	PGS-through-environment	pathways	(e.g.,	through	what	social-psychological	mechanisms	does	the	
education	PGS	increase	educational	attainment;	Bolyard	&	Savelyev,	2020).	
	
Proponents	have	argued	that	PGSs	can	reinvigorate	the	study	of	gene-environment	interactions	(GxE)	with	
“robust	measures	of	genotype”,	in	contrast	to	the	limited	candidate	GxE	approach	(Harden	&	Koellinger,	2020;	
Martschenko	et	al.,	2019).	“By	applying	the	prism	of	GxE	models,	it	is	hoped	that	the	white	light	of	average	effects	
will	be	refracted	into	a	rainbow	of	genetically	mediated	responses	that	are	made	clear	to	the	scholar	interested	in	
describing	human	behavior”	(Conley,	2016,	p.	293).	In	addition,	PGSs	may	also	be	gainfully	employed	in	the	service	
of	understanding	heterogeneous	responses	to	social	interventions,	in	the	form	of	a	PGS	x	intervention	(Harden	&	
Koellinger,	2020).		
	
4.4	Risk	Stratification	and/or	Early	Identification	
Although	most	scholars	agree	that	PGS-based	personalized	programs	or	policies	are	not	realistic	due	to	poor	
individual	prediction,	PGSs	are	still	advertised	as	having	potential	use	in	risk	stratification,	particularly	for	those	in	
the	upper	and	lower	deciles	of	PGSs.	On	this	view,	PGSs	could	be	used	to	identify	‘at-risk’	individuals	before	
problems	manifest	or	become	severe	through	the	implementation	of	an	early	genetic	screening	system	
(Martschenko	et	al.,	2019).	Such	genetic	screening	is	argued	to	provide	an	inexpensive	way	to	more	expansively	
identify	those	at	high	genetic	risk	of	problems,	such	as	lower	educational	attainment	or	physical	inactivity,	and	
intervene	in	advance	with,	for	example,	extra	support	or	placement	into	a	different	learning	environment	(Harden	
&	Koellinger,	2020;	Martschenko	et	al.,	2019).	Similarly,	PGSs	could	be	used	to	identify	‘high	potential’	individuals,	
who	could	also	be	targeted	with	different	learning	environments.																																																																																																																																																																																																																			
	
In	addition	to	risk	stratification,	proponents	argue	that	enhanced	understanding	of	the	distribution	of	genetic	
risks	could	be	used	to	study	the	effects	of	social	institutions	and	programs.	For	example,	in	educational	systems,	
studying	the	distribution	of	genetic	risks	“across	schools	could	be	used	to	study	inequities	in	the	current	ways	that	
the	educational	system	under-	and	overdiagnoses	students…	thereby	identifying	differential	diagnoses	and	
treatment	across	groups”	using	PGSs	as	“indicators	with	some	degree	of	objectivity”	(Martschenko	et	al.,	2019).		
 
4.5 Changing	Worldviews	and	Approaches	to	Social	Inequalities	
Finally,	some	proponents	claim	that	incorporating	genetics	into	social	science	will	change	the	way	that	social	
scientists	think	about	the	world.	In	the	words	of	Harden	and	Koellinger	(2020,	p.567):	

	
“Ultimately,	the	greatest	impact	from	integrating	genetics	into	the	social	sciences	will	probably	not	come	
from	simply	applying	new	tools	to	old	questions,	but	from	changing	how	people	think	about	the	world	
around	them,	allowing	them	to	ask	new	questions	and	to	pursue	new	answers	that	would	not	have	been	
feasible	before.	For	example,	the	realization	that	success	in	life	is	partly	the	result	of	a	genetic	lottery	
raises	new	questions	not	only	about	underlying	mechanisms,	but	also	about	fairness	and	what	a	desirable	
distribution	of	wealth	in	a	society	should	look	like.”		

	
On	this	view,	GWASs	and	PGSs	reveal	the	hitherto	unrecognized	fact	that	‘success	in	life’	is	partly	shaped	by	
our	genetic	inheritances.	In	general,	these	scholars	maintain	that	incorporating	genetics	into	social	science	will	
stimulate	new	ways	of	thinking	about	and	investigating	our	differences	and	inequalities,	which	may	inform	
social	policies	to	ameliorate	inequalities.	
	
4.6 Summary		
Proponents	tout	several	benefits	from	incorporating	PGSs	into	social	science	to	enhance	social	science	research.	In	
the	next	section,	I	scrutinize	the	science	of	sociogenomics,	highlighting	limitations,	which	I	argue,	undermine	the	
utility	of	PGSs	 into	 social	 science.	Most	of	 these	 limitations	are	acknowledged	by	 sociogenomicists;	 yet	 the	 full	
implications	of	these	challenges	are	invariably	unheeded	in	practical	applications.	
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5.	Limitations	of	PGSs	that	Undermine	their	Utility	for	Social	Science	
	
As	is	well	known,	a	person’s	social	traits	emerge	from	a	complex	interplay	of	environmental	and	genetic	influences	
over	their	lifetime.	As	I	have	discussed,	the	goal	of	GWASs	is	to	identify	variant	substitution	effects	as	causal	
genetic	effects,	and	the	raison	d'être	of	PGSs	is	to	index	genetic	influences	on	(differences	in)	phenotypes.	
Proponents	hype	the	value	of	PGSs	for	“unbraiding”	and	“disentangling”	the	effects	of	genetics	and	environments	
in	shaping	individual	differences	in	complex	social	outcomes.	Naturally,	this	only	works	if	(a)	genetic	and	
environmental	influences	on	traits	can	be	differentiated,	and,	if	so,	(b)	PGSs	are	relatively	accurate	and	unbiased	
estimates	of	genetic	influences	(Barton	et	al.,	2019).	Unfortunately,	for	a	variety	of	biological,	statistical,	and	
developmental	reasons,	GWASs	cannot	disentangle	‘genetic’	from	‘environmental’	influences,	such	that	PGSs	do	
not	index	genetic	influences	on	complex	traits	(Haworth	et	al.,	2019;	Morris	et	al.,	2020a).	In	particular,	dynamic	
population	phenomena	induce	confounding	between	genotypes	and	complex	social	outcomes	at	multiple	levels,	
inter	alia:	family,	neighborhood,	peer	group,	region,	culture,	nation,	historical	time	(Barton	et	al.,	2019;	Lawson	et	
al.,	2020).	I	discuss	four	primary	limitations	of	PGSs	that	vitiate	their	utility	for	social	science	as	measures	of	
‘genetic	influences	on’	or	‘genetic	propensities	for’	complex	social	traits:	relatedness	confounding,	downward	
causation,	limited	coverage	of	genetic	influences,	and	context-specificity.		
	
5.1	Relatedness	Confounding	of	PGSs	
The	most	widespread	and	widely	recognized	form	of	environmental	confounding	is	due	to	(genetic)	relatedness	
and	passive	gene-environment	correlations.	Basically,	people	who	are	more	genetically	similar	(i.e.,	more	closely	
related,	even	distantly)	also	tend	to	develop	in	more	similar	sociocultural,	political,	and	physical	environments,	
which	influence	most	complex	social	traits.	Thus,	genotype	and	environments	are	correlated	for	non-causal	
reasons.	Generally,	relatedness	confounding	is	demarcated	into	population	genetic	structure	and	familial	
confounding.	Both	are	known	issues	in	GWASs/PGSs	and	steps	are	taken	to	mitigate	this	confounding.	However,	
evidence	is	mounting	that	these	corrections	are	insufficient,	such	that	inflated	or	spurious	genetic	associations	
persist	(e.g.,	Barton	et	al.,	2019;	Berg	et	al.,	2019;	Haworth	et	al.,	2019;	Morris	et	al.,	2020a;	Mostafavi	et	al.,	2020).	
	
	
5.1.1	Population	(Sub)Structure	&	Phenotype	Stratification	

	
“With	respect	to	confounding	by	population	structure,	the	key	qualitative	difference	is	between	controlling	the	environment	

experimentally,	and	not	doing	so.	Once	we	leave	an	experimental	setting,	we	are	effectively	skating	on	thin	ice,	and	whether	the	ice	
will	hold	depends	on	how	far	out	we	skate.”	(Barton	et	al.	2019,	p.3)	

	
Population	(genetic)	(sub)structure	refers	to	patterns	of	genetic	variation	within	populations	due	to	non-random	
mating.	Population	structure	arises	due	to	complex	demographic	histories	(separation,	migration,	admixture),	
which	result	in	mostly	random	allele	frequency	differences	between	population	subgroups	(Cardon	&	Palmer,	
2003;	Lawson	et	al.,	2020).	When	these	coarse	population	genetic	subgroups	(shaped	by	geographic	region,	
race/ethnicity,	social	class,	religion)	are	differentially	exposed	to	trait-associated	sociocultural	and	physical	
environmental	factors—as	they	often	are—alleles	associated	with	subgroup	membership	are	also	associated	with	
trait	differences,	producing	spurious	or	inflated	genetic	effect	size	estimates,	known	as	phenotype	stratification	
(Browning	&	Browning,	2011;	Cardon	&	Palmer,	2003;	Morris	et	al.,	2020a).		
	
The	classic	example	used	to	illustrate	phenotype	stratification	is	a	genetic	association	study	of	chopstick-eating	
skills	(Hamer,	2000;	Lander	&	Schork,	1994).	If	we	were	to	conduct	a	GWAS	of	using	chopsticks	in	a	sample	of	
diverse	ancestry,	we	would	no	doubt	find	significant	associations.	While	there	may	be	some	genetic	variants	
affecting	our	ability	to	handle	chopsticks	(e.g.,	finger	dexterity),	most	genetic	associations	would	be	due	to	
cultural	differences,	namely	random	variants	that	differed	in	frequency	between	East	Asia	and	the	rest	of	the	
world	and	had	nothing	to	do	with	‘genetic	propensity’	for	chopstick	use	skills.	In	practical	applications,	phenotype	
stratification	is	most	plainly	manifest	with	the	geographic	patterning	of	polygenic	scores,	which	reflects	
sociocultural	and	physical	environmental	influences	(Abdellaoui	et	al.,	2021;	Haworth	et	al.,	2019;	Lawson	et	al.,	
2020).		
	
The	minimal	approach	to	mitigate	phenotype	stratification	is	the	examination	of	an	ostensibly	homogenous	
ancestral	group.	However,	population	substructure	exists	within	these	groups,	including	populations	from	a	single	
location,	such	as	‘white	Europeans’	within	the	U.K.,	Finland,	the	Netherlands,	and	Western	France	(e.g.,	Bycroft	et	
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al.,	2019;	Byrne	et	al.,	2020;	Haworth	et	al.,	2019;	Karakachoff	et	al.,	2015;	Kerminen	et	al.,	2017;	Leslie	et	al.,	2015).	
Such	finer-scale	genetic	population	structure	(known	as	local	or	regional	population	structure)	is	a	function	of	
non-random	mating	shaped	by	sociopolitical	forces,	cultural	factors,	and	different	physical	environments	all	of	
which	foster	assortative	mating	(Morris	et	al.,	2020a;	Richardson	&	Jones,	2019;	Zaidi	&	Mathieson,	2020).	
Consequently,	pervasive,	albeit	often	subtle,	allele	frequency	differences	between	subgroups	experiencing	many	
different	physical	and	social	environments	exist	and	can	be	picked	up	by	GWASs	as	genetic	causes,	even	if	
functionally	unrelated	to	trait	variation.	For	these	reasons,	in	the	presence	of	population	structure,	GWAS	SNP	
associations	may	just	be	proxies	for	(or	inflated	by)	an	environmental	variable	that	has	not	been	properly	
corrected	(Browning	&	Browning,	2011;	Cardon	&	Palmer,	2003;	Novembre	&	Barton,	2018).		
		
Several	sophisticated	statistical	methods	have	been	introduced	to	mitigate	or	adjust	for	population	structure-
confounding,	including	genomic	control	(Devlin	&	Roeder,	1999),	genetic	principal	components	(PCs)	(Price	et	al.,	
2006),	linear	mixed	models	(LMM)(Kang	et	al.,	2010),	and	LD	score	regression	(LDSC)	(Bulik-Sullivan	et	al.,	2015).	
Although	these	methods	appear	to	reduce	population	stratification,	evidence	from	a	variety	of	studies	using	whole	
genome	sequence	data,	simulations,	and	tests	of	non-genetic	traits	(like	latitude/longitude	of	birth,	birth	order)	
evince	that	these	methods	do	not	adequately	correct	for	population	structure,	and	this	is	especially	true	for	
complex	social	traits	of	interest	to	sociogenomicists	(e.g.,	Berg	et	al.,	2019;	Dandine-Roulland	et	al.,	2016;	Mostafavi	
et	al.,	2020;	Sohail	et	al.,	2019;	Zaidi	&	Mathieson,	2020).		
	
For	example,	in	a	recent	study,	Abdellaoui	et	al.	(2021)	demonstrate	that	controlling	for	geographic	region	
decreases	heritability	signals	for	SES-related	traits,	especially	educational	attainment	and	income,	as	
socioeconomic	differences	between	geographic	regions	induce	gene-environment	correlations	that	are	picked	up	
in	GWASs	and	inflate	PGSs	(see	also:	Leslie	et	al.,	2015;	Mostafavi	et	al.,	2020;	Sohail	et	al.,	2019).	In	another	study	
using	simulations,	Zaidi	and	Mathieson	(2020)	show	that	recent	(within	the	past	100	generations	or	~2500	years)	
genetic	structure	with	sharp	effects	poses	a	particular	problem	for	GWAS/PGSs	given	the	tag	SNP	methodology.	
As	they	explain,	recent	population	structure	with	sharp	local	effects,	as	may	result	from	cultural,	language,	and/or	
physical	boundaries	patterning	mating,	can	only	be	adequately	corrected	with	rare	variants,	which	are	not	
measured	in	these	studies.9		
	
In	sum,	the	evidence	is	clear	that	phenotype	stratification	persists	despite	sophisticated	methods	to	mitigate	such	
confounding	–	most	obviously	in	the	form	of	geographic	patterning	of	PGSs	(Abdellaoui	et	al.,	2021;	Byrne	et	al.,	
2020;	Haworth	et	al.,	2019)	–	and	its	effects	(inflating	PGSs)	appear	to	be	particularly	acute	for	complex	behavioral	
traits	related	to	socioeconomic	status	(Abdellaoui	et	al.,	2021;	Lawson	et	al.,	2020).	Crucially,	these	biases	are	
exacerbated	under	the	very	modeling	conditions	most	often	utilized	for	social	science	outcomes	–	when	multiple	
studies	are	meta-analyzed	and	millions	of	SNPs	are	aggregated	in	polygenic	scores.	In	these	situations,	even	subtle	
population	stratification	can	cumulatively	generate	substantial	biases	when	millions	of	SNPs	are	aggregated,	
especially	when	less	stringent	p-values	are	employed	(as	is	typical)	(Barton	et	al.,	2019;	Berg	et	al.,	2019;	Mathieson	
&	Mcvean,	2012).	In	short,	PGSs	for	complex	social	traits	capture	some	non-trivial	amount	of	social	environmental	
effects	due	to	uncorrected	population	substructure	(Abdellaoui	et	al.,	2021;	Curtis,	2018;	Lawson	et	al.,	2020).		
	
5.1.2	Familial	Confounding10	
Biological	parents	not	only	pass	on	½	of	their	genome	to	their	children	but	also	their	environments,	including	
social	status,	culture,	worldviews,	values,	habits,	and	the	like	(Shen	&	Feldman,	2020).	Therefore,	the	association	
between	parental	and	offspring	genotypes	is	often	confounded	by	the	association	of	genotypes	with	rearing	
environments,	effects	which	may	be	amplified	over	generations	via	social	mechanisms	(as	‘dynastic	effects’;	
Brumpton	et	al.	2020).	Such	gene-environment	correlations	inflate	estimates	of	genetic	influences,	especially	for	

 
9	Recent	population	structure	is	driven	by	rare	variants	which	have	a	more	recent	origin	and	therefore	are	less	likely	to	
be	shared	among	population	subgroups	(Fu	et	al.,	2013;	O’Conner	et	al.,	2015).	As	such,	recent	structure	(with	sharper	
effects)	cannot	be	captured	by	or	corrected	with	common	SNPs	used	in	GWASs	(Zaidi	&	Mathieson,	2020).	
	
10	Familial	confounding	is	sometimes	called	“indirect	genetic	effects”	or	“genetic	nurture”;	however,	I	eschew	these	terms	
because	these	imply	a	causal	effect	of	parents’	genotypes	on	child	phenotypes	through	nurture,	which	has	not	been	
demonstrated.	Familial	confounding	also	includes	so-called	‘dynastic	effects’	as	(dis)advantages	passed	down	to	children	
(Abdellaoui	et	al.,	2021).		
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complex	social	traits	where	the	transmission	of	social	advantages	(e.g.,	status	and	wealth)	and	associated	familial	
practices	are	significant	(e.g.,	Kong	et	al.,	2018;	Morris	et	al.,	2020a).	
	
Several	innovative	sociogenomic	studies	have	illuminated	the	extent	of	familial	confounding	in	PGSs.	These	
studies	suggest	that	roughly	half	of	the	effect	of	the	education	PGS	is	due	to	familial	confounding.	For	example,	
Kong	et	al.	(2018)	found	that	controlling	for	an	education	PGSs	created	from	parents’	non-transmitted	alleles	(i.e.,	
the	other	½	of	alleles	not	passed	down)	reduced	the	variance	explained	by	the	offspring	education	PGSs	by	
roughly	half.	If	child	PGS	captures	causal	genetic	effects,	then	controlling	for	non-transmitted	parental	alleles	
would	not	substantially	reduce	the	effect	of	the	child	PGS	on	their	education.	In	contrast,	Kong	et	al.’s	results	
suggested	significant	inflation	of	ostensibly	genetic	effects	by	familial	confounding.	In	another	study,	Cheesman	et	
al.	(2020)	compared	the	predictive	effects	of	an	education	PGS	on	years	of	education	in	adopted	and	non-adopted	
youth.	They	observed	that	the	PGS	was	twice	as	predictive	of	years	of	education	in	non-adopted	versus	adopted	
individuals	(R2=.074	versus	.037),	as	would	be	expected	if	the	education	PGS	captures	familial	effects.	Similarly,	
Belsky	et	al.	(2018)	observed	that	controlling	for	parental	education	reduced	the	effect	of	the	education	PGS	on	
years	of	education	by	about	half,	which	“suggests	environmental	confounding	of	polygenic	score	associations	with	
educational	attainment”	(p.E7277).		
	
As	with	population	structure,	practitioners	are	aware	of	the	issues	with	familial	confounding	and	have	employed	
statistical	techniques	to	attempt	to	mitigate	this	confounding	(see,	e.g.,	Trejo	&	Domingue,	2019;	Wu	et	al.,	2021;	
Young	et	al.,	2018).	The	most	rigorous	approach	to	reduce	familial	and	population	structure	confounding	is	a	
within-family	or	sibling-difference	design.	These	studies	examine	how	differences	between	siblings	in	their	
genotypes	(in	GWAS	or	PGS	prediction)	explain	sibling	differences	in	phenotypes,	net	of	their	shared	rearing	
environments	using	family	fixed	effects	(Belsky	et	al.,	2018;	Laird	&	Lange,	2006).	For	illustration,	Lee	et	al.	(2018)	
used	a	sibling	difference	study	to	test	the	robustness	of	their	(conventionally)	unrelated	sample	education	GWAS	
findings	using	a	sample	of	~22k	sibling	pairs.	Given	differences	in	statistical	power,	Lee	et	al.	(2018)	examined	sign	
concordances	of	the	GWAS	coefficients	(i.e.,	whether	the	effect	direction	of	the	risk	alleles	matched	+/+)	rather	
than	their	significance	or	effect	sizes	across	the	studies	at	three	different	p-value	thresholds.	By	chance,	of	course,	
we	would	expect	50%	of	the	signs	to	match.	Their	results	showed	that	for	the	less	stringent	p-value	threshold	(p<5	
x	10-3),	sign	concordances	between	the	discovery	GWAS	and	sibling-difference	GWAS	were	only	slightly	better	
than	chance	at	~56.5%,	which	improved	at	more	stringent	p-value	thresholds	to	~60%	at	p<5	x	10-5	and	~	65%	at	
p<5	x	10-8.11	[Aside:	although	expecting	perfect	sign	concordance	is	unrealistic,	a	sign	concordance	of	<57%	at	a	p-
value	threshold	that	was	more	stringent	than	the	one	employed	to	create	the	widely	used	education	PGS	does	not,	
in	my	view,	demonstrate	robustness	or	constitute	replicated	findings.]	Lee	et	al.	(2018)	reported	that	the	within-
family	effect	sizes	were,	on	average,	40%	smaller	than	that	from	the	unrelated	GWAS.	The	just-published	updated	
education	GWAS	did	not	present	a	within-family	GWAS	replication;	however,	their	within-family	PGS	analyses	
indicated	that	only	30.9%	of	the	PGS	effect	was	a	‘direct	effect’	(Okbay	et	al,	2022;	see	also	Morris	et	al.	2020).	
		
Not	unexpectedly,	sibling-differences	studies	of	non-social	(more	proximally	biological)	traits,	like	height	and	C-
reactive	protein,	report	only	minor	evidence	of	familial	confounding	and	slightly	reduced	effect	sizes,	whereas	sib-
studies	of	social	outcomes,	like	educational	attainment	and	smoking	behavior,	invariably	report	appreciably	
smaller	effect	size	estimates,	given	the	significance	of	sociocultural	forces	on	these	traits	(Howe	et	al.,	2021;	Lee	et	
al.,	2018;	Mostafavi	et	al.,	2020).	Importantly,	this	confounding	is	not	simply	a	minor	issue	affecting	the	precise	
effect	size	but	evidence	suggests	that	this	confounding	substantively	alters	sociogenomic	findings.	For	example,	
Howe	et	al.	(2021)	demonstrated	that	strong	genetic	correlations	between	education	and	height,	weight,	and	C-
reactive	protein	from	population	genetic	studies	become	‘negligible’	in	sibling-difference	analyses.		
	
Given	the	persistence	of	genetic	relatedness	confounding	in	GWASs	and	PGSs	even	with	sophisticated	
methodological	‘corrections’,	research	employing	PGSs	as	indicators	of	genetic	influence	should,	at	a	minimum	(a)	
control	for	relevant	social	environments	that	are	associated	with	genotype,	including	geographic	location	
(Abdellaoui	et	al.,	2021),	or,	preferably,	(b)	use	sibling-study	adjusted	PGSs	through	a	two-stage	model	to	reduce	

 
11	These	findings	provide	further	evidence	that	the	‘all	SNP’/no	p-value	threshold	PGSs	employed	in	most	studies	capture	
more	bias	than	PGSs	with	p-value	thresholds	(Barton	et	al.,	2019;	Berg	et	al.,	2019;	Sohail	et	al.,	2019).		
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(if	not	completely	eliminate12)	relatedness	confounding.	In	the	two-stage	model,	SNP	p-values	are	estimated	using	
a	large	unrelated	GWAS,	but	the	effect	sizes	are	adjusted	(downward)	using	the	coefficients	from	a	sibling	
difference	study	(Choi	et	al.,	2020;	Zaidi	&	Mathieson,	2020).	Unfortunately,	neither	is	common	practice.	
Estimates	used	to	create	the	education	PGS,	now	widely	available	for	use	in	social	science	datasets,	were	not	
adjusted	based	on	the	sibling	study	reduced	effects	sizes	or	the	sign	mismatch	in	the	replication	mentioned	above.	
Creditably,	the	authors	(Lee	et	al.,	2018)	recognized	the	persistence	of	confounding,	writing:	
	

“[o]ur	within-family	analyses	suggest	that	GWAS	estimates	may	overstate	the	causal	effect	sizes:	if	
educational	attainment-increasing	genotypes	are	associated	with	parental	educational	attainment-
increasing	genotypes,	which	are	in	turn	associated	with	rearing	environments	that	promote	educational	
attainment,	then	failure	to	control	for	rearing	environment	will	bias	GWAS	estimates….	Without	controls	
for	this	bias,	it	is	therefore	inappropriate	to	interpret	the	polygenic	score	for	educational	attainment	as	a	
measure	of	genetic	endowment”	(p.1116,	emphasis	added).	
	

Despite	this	clear	caution	about	using	PGSs	as	genetic	potential	without	controls	for	confounding,	subsequent	
education	PGS	studies	did	not	heed	these	cautions	and	failed	to	control	for	rearing	environments	while	examining	
PGSs	as	‘genetic	propensity’	(e.g.,	Harden	et	al.,	2020;	Herd	et	al.,	2019;	Wedow	et	al.,	2018).		
	
Notably,	even	PGSs	created	from	within-family	GWASs	are	not	immune	to	environmental	confounding	for	two	
key	reasons.	One	has	to	do	with	the	uniqueness	of	within-family	designs.	Due	to	subtle	micro-stratification	and	
complex	social-psychological	dynamics	within	families,	the	extent	to	which	the	causes	of	sibling	differences	for	
complex	social	traits	are	the	same	as	the	causes	of	general	population	differences	is	questionable.	Research	
suggests	sibling	differences	may	be	amplified	or	distorted	as	siblings	attempt	to	create	their	own	niches	or	fill	
unique	roles	in	their	families	(e.g.,	‘the	smart	one’,	‘the	athlete’,	‘the	funny	one’,	‘the	troublemaker’,	‘the	pretty	
one’)	(see,	e.g.,	Healey	&	Ellis,	2007;	Sulloway,	2001)	in	part	through	‘sibling	contrast	effects’	(Carey,	1986).	For	
other	traits	and	behaviors,	differences	may	be	minimized	as	families	tend	to	socialize	children	in	similar	ways	and	
siblings	imitate	one	another.	These	interactional	dynamics	influence	child	identities,	expectations,	motivations,	
personality,	and	developmental	outcomes	and	thus	undermine	the	generalizability	of	sibling	difference	studies.13			
	
In	addition,	genetic	associations	and	PGSs	from	sib-studies	are	confounded	by	broader	socio-cultural	influences.	
This	is	because	the	counterfactual	model	that	underlies	genetic	association	studies	does	not	distinguish	between	
authentic	(upward)	genetic	causes	(i.e.,	from	genetic	differences	to	trait	differences	through	biological	
mechanisms)	and	artificial	downward	(social)	causation.	Both	are	identified	as	causes	in	GWAS’s	counterfactual	
variant	substation	effects	approach.	
	
5.2	Downward	Causation	&	Artificial	Genetic	Signals	
Downward	causation—defined	as	socio-cultural	forces	that	sort	and	select	individuals	based	on	genetically	
influenced	traits,	such	as	skin	pigmentation	and	height,	into	different	environments	and	exposures	that	influence	
social	outcomes—creates	what	I	call	artificial	genetic	associations,	which	are	environmental	influences	
masquerading	as	genetic	influences	in	GWASs.	Although	the	fact	that	sociocultural	environments	shape	and	filter	
genetic	influences	is	understood	by	most,	less	well	understood	is	the	extent	to	which	the	causal	effects	of	social	
structural	and	cultural	forces	acting	on	genetically	influenced	differences	are	identified	as	genetic	influences	in	
GWASs	and	PGSs.14	

 
12	Importantly,	although	sibling	difference	studies	significantly	reduce	environmental	confounding,	they	do	not	
eliminate	it;	as	Zaidi	and	Mathieson	explain,	although	estimates	are	unbiased,	stratification	in	the	PGSs	persistent	
because	the	frequency	of	the	SNPs	are	systematically	correlated	with	the	environment	(see	Zaidi	&	Mathieson,	2020).		
	
13	I	am	grateful	to	an	anonymous	reviewer,	whose	suggestions	enhanced	my	discussion	of	this	particular	challenge.	
	
14	Notably,	downward	causation	is	distinct	from	what	is	known	as	‘evocative	gene-environment	correlation’	and	‘active	
gene-environment	correlation’.	The	former	is	the	term	for	genetic	propensities	evoking	environmental	responses	(e.g.,	a	
pugilistic	person	evokes	hostility	from	others),	whereas	the	latter	refers	to	individuals’	genetically	influenced	
propensities	selecting	them	into	specific	environments	(e.g.,	a	pugilistic	person	takes	boxing	classes).	Downward	
causation,	by	contrast,	refers	to	social	forces	acting	on	(selecting	and	sorting)	individuals	based	on	phenotypes.	See	
Appendix	A.3	for	an	elaborated	discussion.	



 

 
15 

	
Jencks’	(1972)	now	classic	thought	experiment	on	discrimination	by	hair	color	can	be	used	to	illustrate	downward	
causation	creating	artificial	genetic	associations.	Jencks	asks	us	to	imagine	a	system	where	red-haired	children	are	
barred	from	school.	In	such	a	system,	genetic	variants	linked	to	red	hair	would	be	identified	by	GWASs	as	genetic	
causes	of	educational	attainment.	However,	neither	an	individuals’	red	hair,	nor	the	genetic	variants	contributing	
to	red	hair,	are	appropriately	conceived	as	causes	of	differences	in	educational	attainment	in	this	hypothetical,	in	
our	view	and	that	of	others	(Kaplan	&	Turkheimer,	2021),	but	see	(Harden,	2021a).	The	“difference	that	makes	a	
difference”	is	not	red	hair	but	the	social-institutional	policies	excluding	people	with	red	hair,	which	is	why	a	
change	in	the	rules	would	(over	time,	we	presume)	make	hair	color	unrelated	to	educational	attainment	(and	any	
remove	any	red-hair	genetic	associations	with	education).	While	explicit	discriminatory	exclusionary	policies	like	
this	one	are	largely	a	thing	of	the	past	in	most	developed	nations,	both	ongoing	discrimination	and	the	legacy	of	
past	discrimination	(through	intergenerational	transmissions	of	wealth,	status,	social	capital,	etc.)	continue	to	
influence	individual	development	and	trait	differences.	More	broadly,	our	environments	and	institutions,	
educational	and	otherwise,	continue	to	differentially	treat	individuals	based	on	a	variety	of	genetically	influenced	
individual	traits	such	as	height,	body	weight,	personality,	attractiveness,	and	skin	tone	into	different	environments	
and	exposures	and	thus	opportunities,	achievements,	and	developmental	outcomes	(e.g.,	Monk	Jr	et	al.,	2021;	
Simons	et	al.,	2014).	
	
GWASs	and	PGSs	capture	artificial	genetic	signals,	and	these	artificial	effects	are	likely	to	be	pervasive	given	the	
extent	to	which	we	respond	to	phenotypic	cues	in	our	interactions	with	others	in	a	manner	that	is	unavoidably	
socio-culturally	mediated.	Although	casting	such	socioculturally	driven	genetic	associations	as	genetic	propensity	
or	even	‘indirect	genetic	effects’	is	misguided,	even	more	concerning	is	the	subsequent	framing	of	such	
correlations	as	innate	individual	propensities	(individual	‘genetic	fortune’	or	‘misfortune’).	Due	to	downward	
causation,	genetic	associations	for	many	complex	social	behaviors	are	unavoidably	environmentally	confounded	
and	are	not	appropriately	conceived	as	genetic	causes	of	outcomes.	
	
5.3	Limited	Coverage	of	Genetic	Variation	
To	serve	as	a	control	for	genetic	influences,	in	addition	to	not	being	substantially	environmentally	confounded,	
PGSs	need	to	capture	genetic	influences	relatively	accurately	and	comprehensively.	They	do	not.	
	
5.3.1	Low	Resolution	
GWASs	and	PGSs	capture	genetic	variation	at	low	resolution.	As	noted,	SNPs	rarely	have	functional	effects	and	
usually	tag	large	regions	of	common	variation,	which	may	contain	numerous	causal	variants	including	large	effect	
extremely	rare	variants	(McClellan	&	King,	2010).15	The	causal	variant(s)	in	the	tagged	region	may	often	be	
multiple	and	rare,	and	such	that	only	a	paucity	of	individuals	with	the	risk	allele	(tag	SNP)	will	carry	the	actual	
causal	variant.	Thus,	tag	SNPs—even	if	they	reflect	causal	genetic	influences—are	very	imprecise	proxies	for	a	
causal	variant	that	may	only	exist	on	that	haplotype	for	a	small	minority	of	individuals.16	The	tag	SNP	
methodology,	which	excludes	rarer	and	likely	functional	SNVs,	indels,	and	structural	variants	make	GWASs	
possible,	but	it	also	makes	PGSs	uncomprehensive	measures	of	genetic	risk	(Backman	et	al.,	2021).	
	
PGSs	also	ignore	the	X	chromosome	(given	that	females	have	two	and	one	is	usually	inactivated	in	a	cell),	and	
both	GWASs	and	PGSs	invariably	ignore	the	Y	chromosome.	Mitochondrial	DNA	is	also	neglected.	
 
5.3.2	Genetic	Additivity	and	Interactionism	
Finally,	 GWASs	 and	 PGSs	 usually	 estimate	 additive	 genetic	 influences.	 However,	 due	 to	 pervasive	 gene-gene	
interactions	and	interactions	between	non-coding	RNA	genes	and	coding	genes,	focusing	on	additive	effects	from	

 
	
15	Notably,	even	expansively	defined	risk	loci	may	not	actually	contain	the	causal	variant(s).	Research	using	simulations	
or	well-characterized	genetic	diseases	demonstrates	that	low	frequency	causal	variants	can	generate	GWAS	signals	that	
extend	over	millions	of	base	pairs	and	numerous	haplotypes	in	what	is	known	as	‘long	range	LD’	(Dickson	et	al.,	2010).	
	
16	Genes	in	risk	loci	may	be	several	or	zero,	and	there	is	often	no	direct	link	to	specific	genes	despite	the	use	of	‘genes	for’	
language	that	implies	otherwise	(e.g.,	“mothers	with	more	education-related	genes	are	generally	healthier	and	more	
financially	stable	during	pregnancy”;	Armstrong-Carter	et	al.	2020;	emphasis	added).	
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tag	SNPs	is	necessarily	misleading	(as	oversimplified)	about	the	true	nature	of	genetic	influences	(Belsky	&	Israel,	
2014;	Zuk	et	al.,	2012).	Almost	everything	that	happens	even	at	the	cellular	level	is	due	to	the	combined	influences	
of	different	molecular	mechanisms,	such	as	different	proteins	and	functional	RNA	molecules.	Given	that,	the	idea	
that	genotypes	can	just	be	summed	together	to	arrive	at	a	measure	of	genetic	liability	seems	naïve.		
	
To	be	sure,	evidence	for	a	substantial	role	of	interactionism	is	lacking;	however,	the	current	evidence	is	primarily	
based	 on	 low	 resolution	 tag	 SNP	methodologies.	 That	 low	 resolution	methods	 have	 not	 yet	 substantiated	 the	
importance	of	gene-gene	interactions,	does	not	suggest	they	are	not	biologically	important.		
	
In	sum,	for	a	variety	of	methodological	reasons,	PGSs	do	not	control	for	genetic	heterogeneity.	The	final	limitation	
of	PGSs	I	consider	relates	to	the	neglect	of	developmental	interactionism.	As	I	discuss	next,	the	well-known	context-
specificity	of	genetic	influences	(Feldman	&	Lewontin,	1975)	impedes	some	of	the	intended	uses	of	PGSs.		
 
	
5.4	Context	&	Population	Specificity	
That	heritability	studies	are	context-	and	population-specific—a	point	made	clearly	and	forcefully	by	Lewontin	
(1974)	nearly	50	years	ago—is	now	widely	appreciated	after	considerable	scholarly	effort	and	some	costly	
misrepresentations	(Jensen,	1967).	However,	that	GWASs	and	PGSs	are	similarly	context-	and	population-specific	
is	not	as	widely	appreciated	in	theory	or	practice	(but	see	Kaplan	&	Turkheimer,	2021).	It	should	be.	This	is	
particularly	true	for	non-biological	social	behaviors	and	achievements	like	educational	attainment	or	same-sex	
sex,	which	involve	somewhat	arbitrary	institutional	structures	(e.g.,	financial	resources	and	opportunities)	as	well	
as	cultural	norms.17	For	reasons	expounded	upon	below,	such	genetic	associations	should	not	be	understood	as	
timeless,	context-independent	genetic	influences.	That	is,	even	if	we	could	disentangle	the	influence	of	genes	from	
environments	for	these	outcomes,	these	associations	reflect	developmental	gene-environment	interactions	under	
current	social	arrangements	in	each	context,	not	what	could	be	in	different	circumstances	(historical	periods,	
social	position,	cultural	context,	etc.).	
	
This	well-known	context-	and	population-specificity	exists	for	two	general	reasons.	The	first	is	biological:	genes	
always	interact	with	environments	across	all	levels	of	development	in	their	effects	on	complex	traits.	The	second	is	
sociocultural:	the	individual	characteristics	influencing	traits	or	achievements,	and	thus	the	genetic	contributors	
thereto,	vary	across	historical	time,	society,	and	even	across	structural	location.	For	illustration,	the	genetically	
influenced	individual	traits	facilitating	educational	attainment	for	a	woman	in	Saudi	Arabia	in	2000	versus	a	
woman	in	1870s	USA,	2010	India,	2002	Nigeria,	1950	Thailand,	or	2021	USA	are	likely	to	be	distinct	in	non-trivial	
ways.	Whereas	a	woman	going	to	college	in	the	USA	in	2020	would	be	conforming,	a	woman	going	to	college	in	
1870s	USA	would	be	statistically	deviant.	Because	educational	attainment	reflects	numerous	genetically	influenced	
traits,	filtered	by	context	and	relative	condition,	the	idea	of	a	context-invariant	‘genetic	propensity	to’	complex	
social	outcomes	like	educational	attainment,	like	crime,	smoking,	or	same-sex	sex,	is	misguided	(Burt,	2022).	
	
Moreover,	the	search	for	a	‘winning’	genetic	endowment	that	can	be	measured	on	a	unidimensional	scale	
representing	propensity	for	social	success	is	also	misguided,	in	my	view	(e.g.,	Belsky	et	al.,	2016).	This	is	because	
our	DNA	is	part	of	an	interactional	developmental	system	that	responds	to	context-	and	condition-dependent	
stimuli	(Burt,	2018;	Ellis	et	al.,	2012).	Genetic	differences	influencing	complex	traits,	like	traits	themselves,	are	not	
amenable	to	facile	‘good’	or	‘bad’,	‘winning’	or	‘losing’	ratings	but	rather	more	like	‘it	depends’,	on	a	host	of	other	
factors	(e.g.,	other	genetic	differences,	other	traits,	historical	context,	social	class	etc.).	To	use	an	oversimplified	
example,	while	being	confident,	independent,	and	talkative	may	enhance	educational	attainment	and	
occupational	success	for	an	upper-middle	class	white	male,	those	same	traits	among	a	minority	youth	from	a	
disadvantaged	background	could	very	well	impede	educational	attainment.	Of	course,	confidence	and	
independence	emerge	from	a	host	of	influences,	but	the	point	of	this	example	is	to	reveal	the	oversimplified	
(theoretically	and	empirically	unwarranted)	model	underlying	an	additive	genetic	index	representing	a	context-
independent	propensity	for	complex	social	behaviors	like	educational	attainment.		
	

 
17	This	context-dependency	reflects	the	social	reality	of	these	‘traits’	and	behaviors,	which	I	have	argued,	following	
others,	makes	them	unsuited	for	to	a	genetic	reductionist	epistemology	(see	e.g.,	Burt,	2022;	also	Dupré	2012;	Lewontin,	
Rose,	&	Kamin	1984;	Richardson	2017).	
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The	problems	with	a	unidimensional	genetic	propensity	for	complex	biological	traits	are	even	more	obvious	for	a	
phenotype	of	(having	ever	had)	same-sex	sex.	As	with	people	who	attain	higher	levels	of	educational	attainment,	
people	who	have	ever	had	same-sex	sex	display	remarkable	diversity.	From	‘gold	star’	lesbians	and	bisexual	women	
to	‘femme’	women	who	have	same-sex	sex	only	to	please	their	male	partners,	the	search	for	an	additive,	context-
independent	underlying	continuum	of	genetic	propensity	for	‘having	ever	had	same-sex	sex’	is	empirically	and	
theoretically	unwarranted.	Not	only	is	there	expansive	heterogeneity	within	these	groups,	but	also	same-sex	sex,	
like	other	social	behaviors	such	as	doing	ballet,	trying	ecstasy	(MDMA),	and	playing	golf,	is	not	simply	the	outer	
manifestation	of	some	inner	potentiality.	Different	socio-cultural	constraints	and	opportunities	shape	the	
behavioral	manifestation	of	various	traits	and	propensities,	however	genetic,	which	are	then	further	altered	by	
social	responses	in	developmental	feedback	loops	(including	labeling	and	self-identification).	Of	course,	we	can	
impose	a	unidimensional	propensity	measure—a	PGS	or	otherwise—for	such	heterogeneous	and	socially-
contingent	behaviors	by	estimating	the	probability	of	the	binary	measure	of	having	ever	done	so.	But	creating	
such	a	continuum	statistically	does	not	mean	such	a	propensity	exists	biologically.		
	
Thus,	for	yet	another	reason,	PGSs	cannot	be	thought	of	as	‘genetic	potential’,	inasmuch	as	genetic	influences	are	
not	static	charges	where	PGS	effects	sizes	can	be	facilely	compared	across	context	or	condition.	Traits	that	
facilitate	educational	attainment,	and	any	genetic	contributions	thereto,	are	dependent	on	socio-cultural	
influences.	For	example,	if	physical	education	classes	were	equally	emphasized	with	non-PE	courses	and	graded	
not	by	effort	but	by	achievement,	academic	attainment	may	look	noticeably	different.		
	
This	context-specificity	has	implications	for	some	prominent	applications	of	PGSs.	Following	prior	behavioral	
genetics	work	that	examined	how	heritability	estimates	varied	across	contexts	or	conditions,	several	recent	studies	
have	used	PGSs	to	explore	how	‘genetic	influences’	are	moderated	by	(often	‘constrained’	or	‘suppressed’	in)	
different	contexts	or	for	different	social	groups	(Harden	et	al.,	2020;	Trejo	et	al.,	2018;	Wedow	et	al.,	2018).	For	
example,	Herd	et	al.	(2019)	examined	whether	“the	influence	of	genetics	on	educational	attainment	has	changed	
across	cohorts”	and	“whether	this	influence	varies	by	gender”	by	comparing	the	effect	sizes	of	the	education	PGS	
on	educational	attainment	across	cohorts	(defined	by	historical	time)	and	by	sex.	Their	focal	hypothesis	was	that	
among	older	cohorts,	social	structures	of	gender	suppressed	the	‘genetic	potential	for	educational	attainment’	
among	women	but	not	men,	manifest	in	weaker	education	PGS	prediction	among	women	in	older	cohorts.	To	be	
sure,	the	Herd	et	al.	study	was	explicitly	sensitive	to	context,	recognizing	how	genetic	effects	are	‘filtered,	altered,	
and	shaped	by	broader	complex	environments”	(p.1071).	Even	so,	this	approach	remains	insufficiently	context-
situated	and	oversimplified.	This	is	because	the	study	rests	on	the	idea	that	PGSs	capture	a	historically	invariant	
genetic	potential	for	educational	attainment,	such	that	weaker	PGS	prediction	can	be	interpreted	as	lesser	genetic	
influence	and	thus	suppressed	potential.	However,	for	reasons	mentioned	above,	as	contexts	and	opportunities	
change,	so	too	do	the	characteristics	influencing	achievements	and	social	behaviors,	and	thus	their	genetic	
influences.	A	weaker	PGS	across	context	may	just	mean	different	traits	matter	(and	would	be	expected	in	this	
example	for	statistical	reasons	given	the	lower	mean	and	variance	of	educational	attainment	in	the	earlier	cohorts	
compared	to	the	latter	ones.)	For	all	these	reasons,	interpreting	effect	size	differences	in	PGSs	as	indicating	that	
‘genetic	influences	matter	less’	for	social	traits	in	different	contexts	or	as	evidence	that	‘potential	is	suppressed’	is	
unsound.		
	
Upon	deeper	reflection,	the	extent	to	which	research	into	how	contexts	suppress	or	constrain	‘genetic	potential’	
(via	reductions	in	PGS	effect	sizes)	advances	knowledge	is	unclear.	Leaving	aside	my	objection	to	the	notion	of	a	
context-independent	genetic	potential	for	social	traits,	in	general,	and	PGSs	as	an	indicator	of	such	potential,	in	
particular,	what,	specifically,	is	the	value	of	assessing	whether	‘genetic	potential’	is	suppressed	by	these	social	
arrangements?	Until	well	into	the	20th	century,	the	potential	for	educational	attainment	for	women	in	the	USA	
was,	of	course,	constrained	by	structures	of	gender	that	limited	them	to	family	roles	in	the	household.	We	already	
know	women’s	potential	was	suppressed,	in	these	instances.	What	would	it	mean	to	say	that	potential	was	
suppressed	but	not	genetic	potential?	Is	the	null	hypothesis	that	only	‘non-genetic	potential’	was	suppressed	(and	
what	would	that	even	mean)?	Phrased	alternatively,	given	that	potential	emerges	from	developmental	systems	
shaped	by	interacting	genetic	and	environmental	forces,	is	there	any	argument	that	can	be	made	that	
discriminatory	arrangements	or	disadvantages	constrain	achievement	but	do	not	affect	genetic	potential?	How	
would	that	work?	
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6.	Questioning	Substantive	Value-Added	
	
Even	if	the	problems	with	environmental	confounding	could	be	solved,	the	justification	for	incorporating	PGSs	
into	social	science	is	lacking.	The	scientific	warrant	to	include	PGSs	to	reveal	well-established	social	patterns	more	
precisely	or	rigorously	is,	in	my	view,	wanting.	Given	that	we	have	robust	evidence	that	higher	education	is	
associated	with	higher	income,	fewer	children,	and	better	health,	what	is	the	value	of	demonstrating	that	an	
education	PGS	is	associated	with	fewer	children	born,	household	wealth,	or	health?	How	could	it	not	be?	A	recent	
study	with	an	education	PGS	investigated	whether	‘parental	genetics	for	educational	attainment’	are	associated	
with	better	(i.e.,	warm,	stimulating)	parenting,	thereby	partially	explaining	the	association	between	parents’	
education	PGS	and	youth	educational	attainment	(Wertz	et	al.,	2019).	Armstrong-Carter	et	al.	(2020)	highlighted	
this	study	as	illustrating	how	“genes	can	be	used	as	a	lens	for	the	study	of	social	processes	through	which	parents	
influence	their	children”.	Do	we	need	GWASs,	PGSs,	and	studies	of	‘genetic	nurture’	to	demonstrate	that	
supportive,	stimulating	parenting	is	associated	with	child	educational	attainment	and	that	higher	educated—
disproportionately	well-off—parents	are	more	likely	to	engage	in	such	parenting?	Or	that	“children	who	
experience	childhood	disadvantage	are	not	able	to	fully	realize	their	educational	potential”	(Ronda	et	al.,	2020).	Or	
that	“that	genetic	endowments	linked	to	educational	attainment	strongly	and	robustly	predict	wealth	at	
retirement”	(Barth	et	al.,	2020).	I	think	not.		
	
Harden	et	al.	(2020)	touted	the	potential	of	PGSs	as	‘molecular	tracers’	for	social	achievements,	like	educational	
attainment,	that	can	“measure	flows	of	students	through	the	STEM	pipeline	and	assess	how	these	flows	differ	
across	schools”	analogous	to	how	“a	radiologist	might	administer	a	radioactive	tracer	to	track	the	flow	of	blood	
within	the	body”.	However,	the	reason	that	radiologists	use	molecular	tracers	to	trace	internal	functions	is	because	
they	cannot	observe	such	internal	bodily	processes.	Unlike	the	radiologist	tracking	unobservable	internal	bodily	
processes	like	blood	flow,	we	can	observe	and	measure	different	student	aptitudes,	skills,	and	background	factors	
and	assess	how	these	affect	student	progressions	through	educational	systems.	Given	that	opportunities	exist	for	
measuring	background	factors	and	proximal	behaviors	and	that	we	already	have	a	glut	of	assessments	(e.g.,	grades,	
cognitive	testing),	the	need	for	and	utility	of	such	a	tracer—which	those	scholars	admit	is	not	a	useful	individual	
predictor—is	surely	questionable	(Morris	et	al.,	2020b).		
	
In	addition	to	meager	benefits,	such	research	has	several	potential	costs.	The	use	of	PGSs	as	molecular	tracers	is	
rooted	in	the	misguided	idea	that	PGSs	reflect	individual	propensity—i.e.,	that	the	potential	for	educational	
success	resides	in	our	genome.	Indeed,	the	authors	argue	that	“[t]his	approach	offers	a	way	of	diagnosing	the	
extent	to	which	students	who	have	high	genetic	propensities	for	success	in	education	leak	out	of	the	STEM	pipeline	
by	failing	to	advance	in	their	mathematics	training”	(Harden	et	al.,	2020;	emphasis	added).	Not	only	are	PGSs	
flawed	as	measures	of	‘high	genetic	potential’	but	the	concern	with	the	‘high	genetic	potential’	students	‘leaking	
out	of	the	STEM	pipeline’	seems	unjustified	given	paltry	PGS	individual	prediction	and	the	fact	that	potential	for	
complex	social	achievements	like	years	of	education	cannot	be	reduced	to	genotype	(which	the	authors	
acknowledge).	The	paper	evidences	a	heightened	concern	over	the	‘high	genetic	potential’	students	leaking	out	
over	their	‘lesser	potential’	(lower	PGS)	counterparts,	but	this	concern	is	never	explained.	Even	more	concerningly,	
this	focus	on	the	‘high	genetic	propensity’	seems	to	reflect	the	privileging	of	the	purportedly	‘genetically	gifted’	in	
a	manner	that	will	increase	rather	than	decrease	inequalities.		
	
To	be	sure,	Harden	et	al.	(2020)	highlight	the	potential	of	the	education	PGS	as	a	molecular	tracer	to	inform	
school	performance	evaluations	with	the	explicit	aim	of	ameliorating	inequality.	However,	such	applications	of	
school-level	‘genetic	potential’	performance	assessment	would,	given	existing	social	arrangements	and	
environmental	confounding,	identify	schools	with	a	much	higher	proportion	of	lower	income	students	from	less	
educated	families	as	having	lower	genetic	potential.	Using	PGSs	as	potentials,	schools	with	such	lower	performing	
students	would	thus	not	be	identified	as	‘underperforming’	because	their	students	just	‘lost’	in	the	‘genetic	lottery’	
(and	we	cannot	expect	much	from	them	on	this	view).	While	this	is	clearly	not	the	intention	of	the	authors,	using	
PGSs	as	tracers	necessarily	rests	on	the	idea	of	PGSs	as	indicating	genetic	potential	for	educational	success—and,	
as	noted,	the	authors	use	such	terminology.18	Casting	PGSs	as	‘potential’	risks	reifying	genetic	differences	among	

 
18	Although	ethical	considerations	are	not	our	focus,	I	question	the	notion	of	targeting	interventions	to	those	who	might	
need	extra	support	due	to	high	genetic	risk	versus	those	whose	performances	or	whose	teacher	evaluations	indicate	they	
are	at	high	risk,	for	whatever	reason.	Moreover,	the	use	of	PGSs	as	indicators	of	potential	raises	a	host	of	ethical	
concerns,	including	stigma	and	self-limiting	perceptions	of	one’s	potential	(see,	e.g.,	Matthews	et	al.	2021).	
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groups	with	different	social	behaviors	and	attainments	shaped	by	prior	and	existing	unequal	arrangements	as	
‘genetic	potential’	and,	then,	excusing	future	patterns	as	inevitable	due	to	genetic	propensities,	even	for	traits	that	
are	substantially	driven	by	social	inequalities	and	malleable.		
	
These	studies	are	in	no	way	unique	among	sociogenomic	studies	but	instead	reflect	the	implicit	‘because	we	can’	
rationale	of	much	sociogenomics	research,	often	evidenced	by	the	wholly	uncompelling	justification	for	some	
studies.	Take	the	GWAS	of	‘having	ever	had	same-sex	sex’.	Ganna	et	al.	(2019)	explain	the	value	of	their	study	as	
follows:	“With	respect	to	genetic	influences	[on	same-sex	sex],	several	questions	arise.	First,	what	genes	are	
involved	and	what	biological	processes	do	they	affect?...	Identification	of	robustly	associated	variants	could	enable	
exploration	of	the	biological	pathways	and	processes	involved	in	development	of	same-sex	sexual	behavior”	(p.1).	
Leaving	aside	the	implicit	assumption	of	a	molecular	pathology	underlying	‘non-heterosexuality	indicated	by	
‘having	ever	had	same-sex	sex’,	as	we	have	discussed,	GWASs	are	not	at	all	well	suited	to	identify	genes,	
underlying	causal	variants,	or	tracing	biological	pathways	for	complex	traits.	In	short,	that	scholars	can	conduct	a	
study,	does	not	mean	that	they	should	(i.e.,	that	doing	so	advances	science).19	
	
From	a	broader	perspective,	sociogenomics’	ambiguous	contributions	to	knowledge	are	due	to	a	prevailing	deficit	
of	theory,	especially	as	relates	to	causal	theories	about	developmental	processes,	which	permits	a	rather	shallow	
approach	to	the	meaning	of	genetics	plus	social	questions.	To	be	sure,	that	social	science	genetics	has	a	deficit	of	
theory	is	not	a	novel	criticism	(e.g.,	Boardman	&	Fletcher,	2021;	Burt,	Forthcoming;	Panofsky,	2014),	but	attention	
to	this	neglect	of	theory	and	the	manner	in	which	this	neglect	hampers	knowledge	advancement	is	scarce.	In	my	
view,	excitement	over	our	ability	to	conduct	analyses	with	incredibly	advanced	statistical	and	genetic	tools	
appears	to	overshadow	limitations	and	a	sober	evaluation	of	limitations.	All	too	often,	the	contemporary	
enthusiasm	around	applying	new	genomics	tools	to	social	science	adds	a	sheen	that	glosses	over	the	meager	
practical	and	scientific	contributions	of	this	work,	beyond	simply	showing	that	PGSs	are	statistically	significant	or	
have	some	non-trivial	R2.20	At	this	point,	no	serious	scientist	can	suggest	that	genetic	differences	do	not	
influence—in	some	complex,	context-dependent	way—developmental	differences.	Simply	demonstrating	that	yet	
again	with	sophisticated,	albeit	biased,	methods	does	not	advance	understanding	(see	also	Turkheimer,	2016).		
	
Finally,	as	noted,	scholars	point	to	PGSs	as	a	control	to	‘get	genetics	out	of	the	way’	to	reveal	aspects	of	our	
environment;	however,	I	have	yet	to	see	any	sociogenomic	findings	that	change	our	understanding	of	
environmental	influences	or	suggest	different	policy	or	programmatic	approaches.	Given	the	limitations	
mentioned	above,	I	am	unable	to	conceive	of	any	research	findings	at	the	present	state	of	the	science,	that	would	
support	such	changes	in	theory	or	practice.	That	is,	even	if	the	inclusion	of	PGSs	markedly	altered	an	
environmental	estimate,	because	PGSs	are	significantly	environmentally	confounded,	we	cannot	say	that	
controlling	for	‘genetics’	is	the	cause	of	such	changes.	What	is	more,	we	cannot	say	that	environments	matter	‘net	
of	genetics’	because	PGSs	only	capture	a	fraction	of	the	ostensible	heritability	of	social	outcomes.	What,	then,	can	
or	should	we	do?	Below,	I	outline	suggestions	for	sociogenomics	at	the	current	state	of	the	science.	

	
7.	Suggestions		

	
An	abundance	of	genetic	data	is	available	for	incorporation	into	social	science	with	increasingly	advanced	
computational	methods	and	enhanced	rigor	in	approach,	relative	to	earlier	eras.	Given	the	limitations	I	have	
discussed	along	with	my	arguments	about	limited	contributions,	how	should	PGS	be	used	in	social	science,	in	my	
view?	My	answer	is	quite	possibly	unsatisfying:	sparingly	and	cautiously	with	caveats	placed	front	and	center.	
Enthusiasm	about	the	opportunities	genetics	offers	behavioral	science	should	be	tempered	with	a	more	realistic	
appraisal	of	current	challenges	and	uncertainties.	After	all,	we	have	been	here—with	excitement	around	genetics,	

 
	
19	To	this,	some	may	respond	that	social	scientists	should	be	able	to	explore	whatever	outcomes	they	like	and,	even	if	not	
socially	important,	the	findings	‘advance	science’.	Perhaps,	but	I	don’t	see	scholars	studying	the	genetic	architecture	of	
whether	people	have	‘ever	eaten	sushi’,	‘ever	played	golf’,	or	‘only	engage	in	sex	in	the	missionary	position	in	one’s	bed’.		
	
20	Although	what	is	non-trivial	is	not	always	clear.	Studies	employing	PGSs	that	explain	~1%	or	less	of	the	variance	in	
some	outcome	have	been	framed	as	non-trivial	(Mills	et	al.	2018).		
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limitations	in	methodology,	and	substantial	unknown	biology—before,	quite	recently,	with	the	candidate	gene	era	
of	a	few	years	ago	(see	Charney	2022).	
	
Scholars	should	be	more	skeptical	of	the	value	added	of	PGSs	to	social	science,	and	I	have	several	suggestions	to	
this	end.	First,	when	considering	incorporating	PGSs,	behavioral	scientists	should	first	ask	whether	the	outcome	is	
a	sufficiently	tightly	biologically	regulated	phenotype	amenable	for	molecular	genetic	analyses.	If	so,	scholars	
should	explicitly	specify	how	incorporating	genetics	advances	science	with	a	sufficiently	high	bar,	one	which	
acknowledges	potential	risks	and	benefits	and	recognizes	that	it	is	already	well	established	that	our	genetic	
differences	do	matter	in	a	complex,	context-sensitive	way	(Turkheimer,	2016).	Simply	“showcasing	the	power	of	
genetics”	by	revealing	that	PGSs	are	correlated	with	some	outcome	does	not	advance	knowledge.	Additionally,	
sociogenomics	research	should	include	controls	for	social	variables	associated	with	complex	traits.	At	present,	all	
too	often	easily	measured	and	relevant	social	science	predictors	are	not	included	in	research	‘showcasing	the	
power	of	genetics’.	This	is	unsatisfactory.	
	
Importantly,	sociogenomics	scholarship	should	eschew	terminology	that	implies	that	genetic	differences	are	
driving	behavioral	differences	given	pervasive	and	unavoidable	environmental	confounding	for	all	social	
outcomes.	Framing	PGSs	as	‘genetic	influences’	should	be	avoided,	and	terminology	like	‘association’	or	
‘correlation’	should	be	employed	instead.	Likewise,	I	urge	scholars	to	avoid	‘propensity’	terminology	or	treating	
genetic	endowment	as	a	‘lottery’	in	which	there	are	winners	and	losers	for	complex	social	outcomes.	Even	if	we	
could	identify	genetic	influences	on,	for	example,	the	type	of	intelligence	that	facilitates	educational	success	and	
wealth,	facilely	equating	genotypes	associated	with	such	capacities	to	‘winning’	at	genetic	inheritance	or,	
conversely	a	lower	education	PGS	as	“an	unfavorable	genetic	endowment”	(e.g.,	Bolyard	&	Savelyev,	2020),	is	
misguided.	That	is,	of	course,	not	to	deny	that	people	with	greater	wealth	have	better	health	and	easier	times	
dealing	with	stressors,	on	average;	rather	it	is	to	say	that	neither	higher	education	nor	greater	wealth	equals	
winning	‘the	good	life’,	whatever	that	is.	
	
In	sum,	I	urge	sociogenomics	to	think	about	where	the	science	is,	not	where	it	might	be	(avoid	hype	and	
promissory	notes);	to	acknowledge	what	questions	we	can	answer	at	the	current	state	of	knowledge	and	which	
ones	we	cannot;	and,	finally,	to	recognize	that	just	because	social	scientists	can	incorporate	PGSs	into	our	models,	
does	not	mean	that	we	should—i.e.,	that	doing	so	advances	knowledge.		
	

	
8.	Summary	and	Discussion	

	
Here,	I	challenged	proponents’	claims	about	the	scientific	warrant	to	include	PGSs	in	social	science.	After	
outlining	proponents’	arguments	about	the	utility	of	PGSs	for	social	science,	I	argued	that	these	ostensible	
scientific	and	practical	benefits	rely	on	the	misguided	notion	that	PGSs	represent	‘genetic	influences’	on	complex	
social	traits.	Instead,	I	explain	that	PGSs	are	unavoidably	environmentally	confounded	due	to	population	
stratification,	familial	confounding,	and	downward	(socio-environmental)	causation.	Although	methods	exist	to	
mitigate	the	former,	especially	sibling	difference	studies,	artificial	genetic	association	signals	created	by	downward	
causation	cannot	be	differentiated	from	authentic	genetic	signals	with	the	counterfactual	models	employed.	In	
addition,	I	explain	why	PGSs	do	not,	in	fact,	accurately	or	comprehensively	control	for	‘genetic	influences’	on	traits	
because	of	methodological	limitations	(e.g.,	the	tag	SNP	methodology)	and	biological	challenges	(including	the	
nature	of	genetic	influences).	Finally,	I	discussed	the	context-specificity	of	PGSs,	which	precludes	their	use	as	
‘genetic	potential’	in	general,	and	comparisons	across	context	and	condition	as	a	means	of	assessing	the	
suppression	of	‘genetic	influences’,	in	particular.	I	explained	that	these	models	remain	fundamentally	and	
necessarily	wedded	to	an	overly	simplistic	and	ultimately	misleading	(environmentally	confounded	and	
biologically	implausible)	reductionist	genes-versus-environments	approach.		
	
In	response	to	this	critique,	scholars	may	point	to	the	fact	that	‘PGSs	just	work’.	By	that,	they	presumably	mean	
that	PGSs	‘predict’	the	outcomes	they	were	created	to	predict,	even	differences	within	families,	albeit	weakly	in	a	
manner	that	is	inappropriate	for	individual	prediction.	However,	the	potential	of	PGSs	is	not	rooted	in	their	
statistical	predictive	ability,	however	meager	or	substantial,	but	in	their	capturing	genetic	(versus	environmental)	
influences	on	trait	differences.	Furthermore,	for	complex	social	traits	like	education,	as	Morris	et	al.	(2020b)	
documented	in	their	evaluation	of	practical	utility,	an	education	PGS	“provided	little	information	on	[youth]	
future	achievement	over	phenotypic	data	that	is	either	available	or	easily	obtainable	by	educators.”	
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Others	may	respond	by	suggesting	that	I	am	holding	sociogenomic	methods	to	higher	standards	than	standard	
social	science	methodologies.21	To	that	charge	I	cannot	plead	‘not	guilty’.	Instead,	I	justify	my	scrutiny	by	pointing	
to	the	prior	missteps	in	social	science	genetics,	including	the	recent	spectacular	failure	of	the	candidate	gene	era,	
the	incautious	hype,	and	the	potential	for	misuse	(see	Dick	et	al.,	2015;	Yong,	2019).	Moreover,	proponents	and	
critics	alike	have	recognized	that	the	scientific	and	social	risks	for	the	misinterpretation	of	PGSs	are	real	and	
potentially	significant,	a	situation	exacerbated	by	the	media	tendency	to	ignore	caveats	and	uncertainties	and	
social	scientists’	lack	of	expertise	in	genetics	(Barton	et	al.,	2019;	Richardson,	2017).	These	risks	behoove	us	
approach	the	incorporation	of	genetics	into	social	science	with	special	caution	and	appropriate	scientific	
skepticism.		
	
Whether	and	to	what	extent	incorporating	genetics	can	benefit	social	science	theory	and	research	in	a	manner	
that	may	have	practical	implications	remains	to	be	seen.	In	my	view,	the	payoffs	for	studying	genetic	influences	on	
non-disease	complex	social	traits	and	achievements	for	most	applications	are	minimal.	The	potential	costs	of	
prematurely	and	misguidedly	promoting	PGSs	as	“genetic	potential”	are	significant,	and	include,	in	addition	to	
wasting	finite	resources	searching	for	‘genes	for	educational	attainment’,	obscuring	social-structural	and	physical	
environmental	influences	and	promoting	the	individualization	of	social	problems.	
	

9.	Caveats	and	Conclusion	
My	critique	is	intended	to	promote	a	dialogue	between	social	and	behavioral	scientists	about	the	scientific	value	of	
adding	genetics	to	social	science	at	the	current	state	of	knowledge.	I	hope	this	discussion	eschews	hype,	straw	man	
arguments,	imputing	motives,	and	ad	hominem—all	of	which	foster	misunderstanding,	polarization,	even	hostility.	
If	we	avoid	such	discussion-impairing	tactics,	which	characterized	some	prior	efforts	to	discuss	genetics	in	social	
science,	both	science	and	society	will	be	the	better	for	it.		
	
To	avoid	misunderstanding,	I	wish	to	clarify	that	my	stance	does	not	imply	that	the	incorporation	of	genetics	into	
social	 science	 necessarily	 involves	 racist	 motives	 and/or	 tacit	 support	 for	 eugenics;	 it	 quite	 clearly	 does	 not.	
Moreover,	this	critique	is	not	motivated	by	a	desire	to	censure	scholars	by	imputing	(bad)	motives	or	to	censor	areas	
of	 study	 for	 ideological	 reasons	or	due	 to	 sociopolitical	 concerns.	My	aim	 is	 to	draw	attention	 to	 limitations	of	
incorporating	PGSs	into	social	science	and	misinterpretations	with	the	aim	of	promoting	better	science.	
	
In	the	end,	my	argument	is	simply	that	the	claims	made	by	proponents	about	the	benefits	of	PGSs	and	their	utility	
as	measures	of	‘genetic	influences’	or	‘genetic	propensity’	are	overstated	and	misguided.	Due	to	these	limitations,	
PGSs	cannot	be	employed	as	measures	of	‘genetic	influences’	as	they	are	being	utilized	with	increasingly	
regularity.	GWASs	and	PGSs	may	be	powerful	tools	for	identifying	genetic	associations,	but	they	are	not	the	right	
tools	for	understanding	complex	social	traits.		
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21	I	would	also	note	that	from	the	fact	that	I	am	holding	sociogenomics	to	a	rigorous	scientific	standard,	it	does	not	
follow	that	I	do	not	believe	that	standard	social	science	models	should	not	be	rigorous.	That	said,	there	is,	in	my	view,	a	
qualitative	difference	in	promoting	the	view	of	partial,	environmentally	confounded	PGSs	as	fixed	genetic	indicators	of	
innate	potential	and	using	partial	measures	of	socioeconomic	status	on	complex	social	outcomes	for	several	reasons	that	
are,	unfortunately,	out	of	scope.			
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Table 1. Glossary, Acronyms, and Definitions for Sociogenomics Terms
Concept Acronym Definition

Allele A version or alternative form of  a DNA sequence (e.g., a version of  a SNP) or 
a gene.

Allele Frequency The proportion of  all variants at a given position that are the specific allele in 
question; usually reported as the frequency of  the second most common 
variant (i.e. ‘minor allele frequency’). 

Copy Number Variant CNV A type of  genetic variant in which the number of  copies of  a particular 
sequence varies between individuals.*

Gene Sequences of  DNA interspersed at irregular intervals on our chromosomes 
that serve as templates for making an RNA product.

Genetic Risk Score GRS Alternative for PGS

Genome the total DNA sequence in an organism or cell; the human genome consists of  
roughly 6 billion nucleotide bases of  nuclear DNA separated into 46 
chromosomes plus mitochondrial DNA.

Genome-wide association study GWAS A statistical analysis that estimates the partial correlation between each 
measured DNA variant (usually SNPs) and a particular phenotype, net of  a 
few controls (usually age, sex, and ancestry PCs).  

Haplotype a sequence of  alleles found at linked loci on a chromosome

Haplotype Block blocks of  variants that are in linkage with each other but not with variants in 
adjacent blocks (separated by recombination); the consequence of  shared 
ancestry.

(Short) Insertion-Deletion Indel Broadly as used here, all types of  DNA change that cause a size change at a 
specific position: insertions, duplications, deletions, and compound insertion/
deletion up to 50bp (includes short CNVs).

Linkage Disequilibrium LD The non-random association of  alleles on a chromosome; when alleles at 
separate loci are associated with each other at a significantly higher frequency 
than would be expected by chance.


Locus Designated region on a chromosome. Region can vary from > a 1Mb to a 
single base position.

Non-coding RNA ncRNA RNA that does not code for a protein; ncRNA has many functions in the cell.

(Genetic) Principal Components PCs Orthogonal controls for ancestry created from a principal components analysis 
(a dimension reduction technique) of  the genetic relatedness matrix.

Polygenic Index PGI Alternative for PGS

Polygenic Risk Score PRS Alternative for PGS

Polygenic Score PGS A genetic summary score representing the additive genetic association with a 
trait; composite measure created as the sum of  the GWAS-weighted allele 
dosages for each individual; human equivalent to the breeding value.

Quantitative Trait Locus QTL A locus (that statistical analysis has) linked to a continuous (quantitative) trait, 
like height.


Single Nucleotide Polymorphism SNP A position on the genome where two (or occasionally 3) alternative nucleotides 
are common (>1%) in the population; common SNVs.


Single Nucleotide Variant SNV A position on the genome where alternative nucleotides exist.


Structural Variant SV Sequence changes (insertions, deletions, translocations) that involve a change in 
more than 50 bases. (In the past, structural variation was concerned with large 
sequence changes >1kb, but with next generation sequencing, SVs it has come 
to represent smaller changes).

Tag SNPs Mostly non-functional SNPs in GWAS used to tag a region of  common 
variation; common SNPs used to tag haplotypes.

*“The term copy number variant used to be applied to all variants that had a variable number of  tandem repeats, including short tandem repeats, such as 
the microsatellite in (D ) where there are 12 or 11 copies of  the CA dinucleotide. In genome sequencing projects, the term is reserved for large size 
changes only, such as variable numbers of  repeats exceeding 50 nucleotides in the case of  the 1000 Genomes Project.” (Strachan & Reed 2018).




Appendix A 
 
In what follows, I provide a concise overview of the genomics of sociogenomics, including an introduction 
to genomics, the types of genetic variation, and their potential effects. This discussion is necessarily 
abbreviated and detailed as ‘all going well’ (e.g., chromosomal aneuploidies are not discussed). This is 
followed by a short elaboration of downward causation and artificial genetic signals and a comparison with 
‘authentic’ genetic signals and conditional genetic effects. 
 
A.1 Basic Genetics of Sociogenomics 
(Nuclear) DNA are the focus of human genetics.1 Humans have 46 chromosomes, each of which is a very 
long double-stranded molecule of DNA arranged in the famous double helix. We inherit 22 matching pairs 
of non-sex chromosomes, one each from our mothers and fathers. In addition, each of us inherits an X 
chromosome from our mother and either an X or Y chromosome from our father that determines sex, all 
going well. Each chromosome is composed of a linear sequence of nucleotides—the building blocks of DNA. 
Nucleotides are composed of three parts: a deoxyribose sugar, a phosphate group, and 1 of four nucleic acid 
bases: adenine (A), thymine (T), guanine (G), and cytosine (C). The order of these bases on our chromosomes 
is our genetic code. Altogether, the human genome contains ~ 6 billion bases (3 billion base pairs (bp)). 
 
Genes are sequences of DNA scattered on our chromosomes that serve as templates for making an RNA 
product (that becomes a protein or functional RNA product with subsequent processing). The canonical 
gene is a protein-coding gene—a stretch of DNA that encodes the sequence of amino acids that will be 
folded into a functional protein. So-called ‘non-coding RNA genes’ are DNA sequences that encode 
functional RNA products, which perform essential cellular functions, including facilitating and regulating 
gene expression. Following others, when I use ‘gene’, I refer to protein-coding genes.  
 
Our DNA are informational storage molecules. Like recipes, genes are not self-activating but are utilized 
by cellular machinery to create proteins via coordinated cellular mechanisms, especially RNAs and 
ribosomes (Hubbard, 1999). Messenger RNAs, which are specified by the ‘genetic [protein] code’, serve as 
the information-transfer intermediary between DNA and proteins. The language or ‘ingredients’ in our 
genetic code are three-base sequences, known as codons, which specify an amino acid (or a stop message). 
There are 20 amino acids and 64 codons, of which one is a ‘start’ codon and three codons specify a stop 
transcription message (like a period). Each codon specifies only amino acid, but most amino acids are 
encoded by 2 or more codons, due primarily to redundancy at the third base. 
 
Excepting male-specific genes on the Y chromosome, we inherit two copies of each gene, one from each 
parent. Overall, humans have about ~20,000 (protein-coding) genes2, slightly more than chicken and fewer 
than half the genes of rice (~50,000 genes). Despite only having ~20,000 genes, humans can produce more 
than 100,000 proteins. Our complexity is not a function of our gene number (or genome size) but by 
complexities in gene regulation. This one gene → multiple proteins potential is facilitated by a variety of 
RNA-mediated mechanisms, including alternative splicing—where the same ‘gene’ (more precisely, mRNA 
transcript) is ‘spliced’ in different ways to make different amino acid chains; ‘readthrough’ or ‘conjoined’ 
genes, where two adjacent genes are transcribed together; as well as post-translational modifications, where 
different folding of polypeptides creates different functional proteins. In the same way a recipe does not 
make a cake, genes do not make a protein, much less a phenotype. 
 

 
1 In addition to nuclear DNA, we have mitochondrial DNA (mtDNA)—a relatively tiny, maternally inherited, circular DNA 
molecule containing 37 genes. Unless otherwise noted, my discussions refer to nuclear DNA. 
 
2 The number of human genes is continually updated (revised up and down) and varies across official counts due to slight 
differences in definitions of genes but has stabilized around 20,000. The number can never be an exact one given variation. 
 



Despite getting the most attention, protein-coding DNA only comprises about 1.3% of our genome. Much 
of the remainder of our DNA was once thought to be largely junk; however, research revealed that most of 
our genome contains signals of function (ENCODE Project Consortium, 2004). How much of our genome 
is, in fact, functional (~5%-85%) remains debated (Doolittle, 2013; Germain et al., 2014; Pennisi, 2012). 
 
A.2 Overview of Genetic Variation 
 
A.2.1 Types and Consequences of Genetic Variation 
There are three main classes of DNA variants. Almost always, GWASs examine only a subtype of the first 
of these. 
 
A.2.1.1 Single nucleotide Variants (SNVs) and Single Nucleotide Polymorphisms (SNPs) 
The first and by far the most common variant—accounting for almost 87% of all variants between people—
are single nucleotide variants (SNVs). A SNV exists where, for example, at specific position on the genome most 
people may have an A but a minority of people have a C. SNVs that are “common” occur in at least 1% 
(though sometimes > 0.5%) of a population are known as single nucleotide polymorphisms (SNPs—pronounced 
‘snips’). SNPs are thus the subset of SNVs that are ‘common’.3 Most SNPs are ancient mutations that 
predate the Out of Africa dispersal of humans some 50-100 thousand years ago and are thus shared by all 
human populations.  
 
At present there are more than 475 million validated SNVs, most of which are rare. Many (roughly half) of 
these SNVs are ‘singletons’; that is, they are observed in only one individual in a sample (Taliun et al., 2021). 
Although most SNVs are rare (i.e., not SNPs), most (>95%) of the SNVs in an individual genome are 
common (are SNPs) (Taliun et al., 2021; Telenti et al., 2016). In total, there are ~10-20 million SNPs in the 
human genome, with variation due to how one defines ‘common’ (Auton & al., 2015).  
 
Most SNVs are bi-allelic (come in two forms), but some are tri-allelic or quad-allelic. Bi-allelic SNPs are the 
form of variation examined in most GWAS and used in the creation of PGSs.  
 
A.2.1.2 (Short) Insertion-Deletions (Indels) 
A second class of variants is comprised of short insertions and deletions (indels), which includes 
duplications, deletions, or insertions up to 50bp. (Short) copy number variants (CNVs) (including those 
which have a variable number of tandem unit repeats (or VNTRs), such as a sequence TTACTGC 
repeated 4-8 times), are included as ‘indels’ or ‘delins’ here as in genome sequencing projects.  
Indels are relatively common (account for ~13% of human sequence variation) and have multiple alleles 
leading to significant genetic heterogeneity, (which is why short sequence repeats are useful in forensic 
DNA testing). Indels are rarely measured in GWASs (Tam et al., 2019). 
 
 
A.2.1.3 Structural Variants 
The remaining class of genetic variation, structural variants (SVs), are DNA rearrangements (deletions, 
duplications, or inversions) involving more than 50bp. In the past SVs were defined as larger sequence 
changes typically up to 1kb, but now are defined as smaller changes and include copy number variants 
larger than 50bp (Strachan & Read, 2018).  
 
Although SVs are relatively uncommon (accounting for only ~0.15% of the variants, which translates to 
about 7,500 per genome), they account for more (nearly 2x more) overall nucleotide (sequence) differences 

 
3 Geneticists are moving away from the SNP-SNV distinction given the somewhat arbitrary classification and different 
usages of the term across disciplines. Instead, there is a move toward classifying SNVs as common (>5%), low frequency 
(0.5-5%), and rare (<.5%) (Strachan & Read 2018). However, given that the GWAS field uses the term SNP, I will do so 
here. 
 



than the two other variant types combined given their size (Collins et al., 2020; Sudmant et al., 2015). 
Notably, measuring SVs is much more difficult and less common given that the short-read, efficient 
sequencing technology that predominates does not measure SVs well (Shendure et al., 2017; Shendure et 
al., 2008). Long-read sequencing suggests that there may be several-fold more SVs that are hidden due to 
systematic biases in detection (Sudmant et al., 2015).  
 
A.2 Effects of Genetic Variants 
Notably, most of our variants lie outside of coding regions with no known (or expected) functional impact 
(i.e., (putatively) ‘nonfunctional variants’). That said, a recent deep sequencing study observed that one-
third of human protein-coding genes show some variation among individuals in the amino acid sequences 
they encode (Taliun et al., 2021). As discussed in the text, functional variants either alter gene product (e.g., 
the protein produced) or gene dosage (e.g., the amount of protein produced).  
 
SNVs are classified by their functional effects in coding regions. ‘Synonymous’ SNVs are non-functional 
base changes that do not alter the amino acid and protein product, whereas ‘non-synonymous’ SNVs are 
those that change the amino acid sequence. There are three types of non-synonymous SNVs: missense, 
nonsense, and read-through variants. Missense variants change the amino acid (e.g., CCU → ACU would 
change the amino acid from proline to threonine) and can have significant to no noticeable effect on the 
protein and its efficacy; (think switching sugar with pepper in a recipe versus switching onion powder with 
garlic powder). Nonsense mutations cause a premature stop codon (e.g., GGA (glycine → UGA(stop)). 
These effects tend to be more significant than missense changes, much like a recipe that just ended randomly 
early. Finally, read-through or nonstop mutations change a stop codon to an amino acid codon, causing the 
polypeptide to be longer than it should be (e.g., UGA (stop) to → GGA (glycine)), akin to just adding more 
ingredients to a recipe.  
 
Unlike SNVs, indels and structural variants affect more than one base pair and thus produce differences 
in the lengths of DNA sequences across people. These variants can have significant functional 
consequences given they alter more sequence and can result in coding frameshifts, which refer to shifts in 
the entire coding sequence which can markedly alter the composition of the resulting polypeptide 
product. A useful analogy to frameshift effects is the removal of a few letters from a sentence. For 
example, deleting a few letters in the first sentence in the statement: “I am going to the store tomorrow. Is 
that okay?” makes the sentence gobbledygook: “I am gothe st oreto morrowistha.”  
 
A.3 A Brief Elaboration of Downward Causation. 
As, I discuss in the main text, the counterfactual ‘variant substitution effect’ model underlying GWASs 
and PGSs cannot distinguish between authentic genetic associations and artificial ones representing 
downward causation. In GWASs and thus PGSs, both signals are identified as causal. 
 
Authentic genetic variants are those that act in biological pathways shaping traits or diseases, such as 
variants affecting age-related macular degeneration or Huntington’s disease. In these cases, variants 
causally influence phenotypes through biological pathways (e.g., via non-synonymous substitutions 
causing amino acid replacement). By contrast, downward causation refers to the situation where socio-
environmental forces are the causal forces driving a genotype-phenotype association. Downward 
causation is ‘downward’ because social forces are acting (down) on traits or other differences, which are 
shaped by genetic differences (thereby generating observed genetic associations). In these cases, identified 
genetic differences are not causally involved in the biology of trait or behavior differences; the signals are 
artificial because they reflect social not genetic processes.  
 
For a real-world example of downward causation, African Americans were excluded from many 
educational institutions before and during Jim Crow on the basis of their race (and of course differentially 
admitted even after Jim Crow to persisting discrimination). In this case, (racist) social structures acted 
upon racialized genetic differences, such as alleles related to skin pigmentation, to exclude or restrict 



individuals for reasons biologically unrelated to educational attainment. In a GWAS4, such alleles would 
be identified as causing differences in educational attainment, but these association signals would, of 
course, be artificial.  
 
Notably, downward causation is distinct from (causal) conditional genetic effects, in which genetic 
differences influence phenotypes (through biological pathways) only in some context. Conditional genetic 
effects are causally biologically involved in trait differences, whereas genetic variants reflecting downward 
causation are not.  
 
Finally, the distinction between downward causation and an authentic genetic influence is not normative 
one. The distinction reflects the direction of causality and the relevance of the genetic difference to the 
biology of the trait, whether or not we think such differences are fair or just.  
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4 This is basic illustration illustrating processes of downward causation. As noted, most GWASs imperfectly control for 
ancestral differences (continental ancestry) and population substructure. However, as noted in the text downward 
causation is pervasive—e.g., social selection on attractiveness, height, weight, colorism— with most such factors 
imperfectly controlled, if controlled at all.  


